Manuel d'utilisation / d'entretien du produit 320571-01 du fabricant National Instruments
Aller à la page of 157
© Copyright 1993 National Instruments Corporation. All Rights Reserved. NI-DSP ™ Software Reference Manual for LabVIEW ® for Windows Digital Signal Processing Software for the PC December 1993 Edi.
National Instruments Corporate Headquarters 6504 Bridge Point Parkway Austin, TX 78730-5039 (512) 794-0100 Technical support fax: (800) 328-2203 (512) 794-5678 Branch Offices: Australia (03) 879 9422, Austria (0662) 435986, Belgium 02/757.
Limited Warranty The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation.
Warning Regarding Medical and Clinical Use of National Instruments Products National Instruments products are not designed with components and testing intended to ensure a level of reliability suitable for use in treatment and diagnosis of humans.
© National Instruments Corporation v NI-DSP SRM for LabVIEW for Windows Contents About This Manual .................................................................................................................... xi Assumption of Previous Knowledge .
Contents NI-DSP SRM for LabVIEW for Windows vi © National Instruments Corporation DSP Absolute ............................................................................................................................................ 2-4 DSP Add ..
Contents © National Instruments Corporation vii NI-DSP SRM for LabVIEW for Windows DSP ReFFT ............................................................................................................................................... 2-66 DSP Reset .
Contents NI-DSP SRM for LabVIEW for Windows viii © National Instruments Corporation Chapter 4 Using the DMA VIs .................................................................................................................................. 4-1 DSP DMA Copy(DSP to LV) .
Contents © National Instruments Corporation ix NI-DSP SRM for LabVIEW for Windows Figures Part 1 Figure 1-1. Development Paths with the NI-DSP Software ............................................................................. 1-1 Part 2 Figure 1-1.
Contents NI-DSP SRM for LabVIEW for Windows x © National Instruments Corporation Tables Part 1 Table 1-1. Subdirectories Created by SETUP ................................................................................................. 1-2 Part 3 Table 1-1.
© National Instruments Corporation xi NI-DSP SRM for LabVIEW for Windows About This Manual The NI-DSP Software Reference Manual for LabVIEW for Windows explains how to use the NI-DSP software package for the LabVIEW for Windows environment.
About This Manual NI-DSP SRM for LabVIEW for Windows xii © National Instruments Corporation - Chapter 3, DSP Board Function Overview , contains an overview of the prototypes of the C-callable NI-DSP Analysis functions on the DSP board that you can use in your custom programs.
About This Manual © National Instruments Corporation xiii NI-DSP SRM for LabVIEW for Windows LabVIEW Data Types Each VI description includes a data type picture for each control and indicator, as ill.
About This Manual NI-DSP SRM for LabVIEW for Windows xiv © National Instruments Corporation Related Documentation The following documentation available from National Instruments contains information that you may find helpful as you read this manual.
About This Manual © National Instruments Corporation xv NI-DSP SRM for LabVIEW for Windows Developer Toolkit The Developer Toolkit, an optional software package that you can purchase separately from National Instruments, is required for building custom libraries with the NI-DSP Interface Utilities.
NI-DSP SRM for LabVIEW for Windows 1-1 Part 1: Getting Started with NI-DSP Part 1 Getting Started with NI-DSP This part contains a brief product overview, information about the NI-DSP for LabVIEW for Windows package, and the procedure for installing the software.
Getting Started with NI-DSP Part 1 Part 1: Getting Started with NI-DSP 1-2 NI-DSP SRM for LabVIEW for Windows What Your Distribution Diskettes Should Contain The NI-DSP software package contains the NI-DSP for LabVIEW for Windows Disks (for licensed LabVIEW for Windows users).
Part 1 Getting Started with NI-DSP NI-DSP SRM for LabVIEW for Windows 1-3 Part 1: Getting Started with NI-DSP NIDSP is the name you specify during setup. The SETUP program prompts you for information including the drive letter and directory in which you have installed the standard LabVIEW package.
NI-DSP SRM for LabVIEW for Windows 1-1 Part 2: Introduction to the NI-DSP Analysis VIs Part 2 Introduction to the NI-DSP Analysis VIs This part describes how to use the NI-DSP Analysis VIs in your LabVIEW applications.
Introduction to the NI-DSP Analysis VIs Part 2 Part 2: Introduction to the NI-DSP Analysis VIs 1-2 NI-DSP SRM for LabVIEW for Windows The AT-DSP2200 can process large amounts of data, separately and distinctly from the host PC processor.
Part 2 Introduction to the NI-DSP Analysis VIs NI-DSP SRM for LabVIEW for Windows 1-3 Part 2: Introduction to the NI-DSP Analysis VIs The DSP Allocate Memory VI allocates memory buffers on the DSP board and returns a DSP Handle Cluster, which has two fields that uniquely describe this buffer–a DSP Handle and a size.
Introduction to the NI-DSP Analysis VIs Part 2 Part 2: Introduction to the NI-DSP Analysis VIs 1-4 NI-DSP SRM for LabVIEW for Windows Figures 1-4 and 1-5 show how to allocate a DSP Handle Cluster of 2,048 4-byte-long elements on board 3. The board number on which the buffer is allocated is important for determining the ownership of the buffer.
Part 2 Introduction to the NI-DSP Analysis VIs NI-DSP SRM for LabVIEW for Windows 1-5 Part 2: Introduction to the NI-DSP Analysis VIs Special Features of the NI-DSP Analysis VIs This section describes the special features of the NI-DSP Analysis VIs that make them different from other LabVIEW VIs.
Introduction to the NI-DSP Analysis VIs Part 2 Part 2: Introduction to the NI-DSP Analysis VIs 1-6 NI-DSP SRM for LabVIEW for Windows The error in/error out cluster contains the following elements: The boolean value is true if an error occurred, false if no error occurred.
Part 2 Introduction to the NI-DSP Analysis VIs NI-DSP SRM for LabVIEW for Windows 1-7 Part 2: Introduction to the NI-DSP Analysis VIs error out of the Copy Mem(LV to DSP) VI is connected to the error in of the DSP Free Memory VI error out of the DSP Add VI is connected to the error in of the Copy Mem(LV to DSP) VI Figure 1-9.
Introduction to the NI-DSP Analysis VIs Part 2 Part 2: Introduction to the NI-DSP Analysis VIs 1-8 NI-DSP SRM for LabVIEW for Windows An Example of Using NI-DSP Analysis VIs Figures 1-10 and 1-11 show the front panel and block diagram, respectively, of an example using NI-DSP Analysis VIs.
Part 2 Introduction to the NI-DSP Analysis VIs NI-DSP SRM for LabVIEW for Windows 1-9 Part 2: Introduction to the NI-DSP Analysis VIs This example shows you how to obtain the power spectrum of a sine wave signal.
NI-DSP SRM for LabVIEW for Windows 1-1 Part 3: NI-DSP Function Reference Chapter 1 NI-DSP Analysis VI Reference Overview This chapter contains an overview of the NI-DSP Analysis VIs and includes a list of the VIs. This chapter describes how the NI-DSP Analysis VIs are organized and how to access them.
NI-DSP Analysis VI Reference Overview Chapter 1 Part 3: NI-DSP Function Reference 1-2 NI-DSP SRM for LabVIEW for Windows Table 1-1. The NI-DSP Analysis VI Groups (Continued) Filters DSP Butterworth Co.
Chapter 1 NI-DSP Analysis VI Reference Overview NI-DSP SRM for LabVIEW for Windows 1-3 Part 3: NI-DSP Function Reference Table 1-1. The NI-DSP Analysis VI Groups (Continued) Utility Functions DSP Rese.
NI-DSP Analysis VI Reference Overview Chapter 1 Part 3: NI-DSP Function Reference 1-4 NI-DSP SRM for LabVIEW for Windows Figure 1-1. Choosing DSP2200 from the Functions Menu About the Fast Fourier Transform (FFT) The VIs in the Frequency Domain group are based upon the discrete implementation and optimization of the Fourier Transform integral.
Chapter 1 NI-DSP Analysis VI Reference Overview NI-DSP SRM for LabVIEW for Windows 1-5 Part 3: NI-DSP Function Reference The discrete implementation of the DFT is a numerically intense process. However, it is possible to implement a fast algorithm when the size of the sequence is a power of two.
NI-DSP Analysis VI Reference Overview Chapter 1 Part 3: NI-DSP Function Reference 1-6 NI-DSP SRM for LabVIEW for Windows The set of coefficients a and b are often referred to as the numerator and denominator coefficients, respectively. Another common way to refer to them is as the feedforward and feedback coefficients.
Chapter 1 NI-DSP Analysis VI Reference Overview NI-DSP SRM for LabVIEW for Windows 1-7 Part 3: NI-DSP Function Reference The simplest window is a rectangular window. Because this window requires no special effort it is commonly referred to as the no window option.
NI-DSP Analysis VI Reference Overview Chapter 1 Part 3: NI-DSP Function Reference 1-8 NI-DSP SRM for LabVIEW for Windows Window definitions used in National Instruments analysis libraries are designed in such a way that the window operations in the time domain are exactly equivalent to the operations of the same window in the frequency domain.
NI-DSP SRM for LabVIEW for Windows 2-1 Part 3: NI-DSP Function Reference Chapter 2 NI-DSP Analysis VI Reference This chapter contains a brief explanation of each NI-DSP Analysis VI .
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-2 NI-DSP SRM for LabVIEW for Windows Copy Mem(DSP to LV) Copies an entire or partial buffer of data according to the entire/partial copy selector from the Source buffer on the DSP board that is referred to by a DSP Handle Cluster to the destination buffer in LabVIEW.
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Reference 2- 3 NI-DSP SRM for LabVIEW for Windows Copy Mem(LV to DSP) Copies a buffer of data from th e source buffer in LabVIEW to the destination buffer on the DSP board, which is referred to by a DSP Handle Cluster.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2- 4 Part 3: NI-DSP Function Reference DSP Absolute Find the absolute value of input array X . The i th element of the output arra y Y is obtained using the following formula: Y(i) = |X(i) |.
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Reference 2- 5 NI-DSP SRM for LabVIEW for Windows DSP Add Add arra y X to array Y. The i th element of the output array Z is obtained using the following formula: Z(i) = X(i) + Y(i). for i = 0, 1, 2, … , n-1 where n is the smaller number of elements in X and Y .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2- 6 Part 3: NI-DSP Function Reference DSP Allocate Memory Allocates a block of memory buffer on the DSP board specified by slot and returns a DSP Handle Cluster that contains the coded DSP board memory and the number of elements in this buffer.
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Reference 2- 7 NI-DSP SRM for LabVIEW for Windows DSP Blackman Window Applies a Blackman window to the input sequence X . If Y represents the output sequence Blackman{X } , the elements of Y are obtained from the following formula: y i = x i [0.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2- 8 Part 3: NI-DSP Function Reference DSP Blackman Harris Window Applies a Blackman Harris window to the input sequence X . If Y represents the output sequence Blackman Harris{X} , the elements of Y are obtained using the following formula: y i = x i [0.
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Reference 2- 9 NI-DSP SRM for LabVIEW for Windows DSP Butterworth Coefficients Generates the set of filter coefficients to implement an IIR filter as specified by the Butterworth filter model.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-1 0 Part 3: NI-DSP Function Reference Parameter Discussion The arrays Forward Coefficients in/out an d Feedback Coefficients in/out must have a size of at least ( order + 1) for lowpass and highpass filters.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-11 Part 3: NI-DSP Function Reference Feedback Coefficients out is a DSP Handle Cluster that is identical to the Feedback Coefficients in , but with the feedback coefficients already stored in the memory buffer on the DSP board.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-12 NI-DSP SRM for LabVIEW for Windows DSP Complex FFT Computes the Fast Fourier transform of the complex input sequence X. If Y represents the complex output sequence, then: Y = F {X}.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-13 Part 3: NI-DSP Function Reference DSP Convolution Computes the convolution of the input sequences X and Y .
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-14 NI-DSP SRM for LabVIEW for Windows DSP Correlation Computes the cross correlation of the input sequences X and Y .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-15 Part 3: NI-DSP Function Reference DSP Cross Power Computes the cross power spectrum of the input sequences X and Y .
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-16 NI-DSP SRM for LabVIEW for Windows DSP Custom Use this VI as the interface to call your own custom functions written on the DSP board from LabVIEW. For more details about how to use this VI, refer to Part 4, NI-DSP Interface Utilities , of this manual.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-17 Part 3: NI-DSP Function Reference DSP Decimate Decimates the input sequence X by the decimating factor and the averaging control.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-18 NI-DSP SRM for LabVIEW for Windows DSP Deconvolution Computes the deconvolution of the input sequences X and Y .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-19 Part 3: NI-DSP Function Reference DSP Derivative Performs a discrete differentiation of the sampled signal X . The differentiation f(t) of a function F(t) is defined as follows: f(t) = d dt F(t).
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-20 NI-DSP SRM for LabVIEW for Windows DSP Divide Divide array X by array Y. The i th element of the output array Z is obtained using the following formula: Z(i) = X(i) / Y(i). for i = 0, 1, 2, …, n-1.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-21 Part 3: NI-DSP Function Reference DSP Elliptic Coefficients Generates the set of filter coefficients to implement a digital elliptic IIR filter. You can then pass these coefficients to the DSP IIR Filter VI.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-22 NI-DSP SRM for LabVIEW for Windows error in (no error) contains the error information from a previous VI. If an error occurs, it is passed out error out and no other calls are made.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-23 Part 3: NI-DSP Function Reference DSP Equi-Ripple BandPass Generates a bandpass FIR filter with equi-ripple characteristi.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-24 NI-DSP SRM for LabVIEW for Windows A delay is also associated with the output sequence delay = m-1 2 . error in (no error) contains the error information from a previous VI.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-25 Part 3: NI-DSP Function Reference DSP Equi-Ripple BandStop Generates a bandstop FIR digital filter with equi-ripple chara.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-26 NI-DSP SRM for LabVIEW for Windows A delay is also associated with the output sequence: delay = m-1 2 . error in (no error) contains the error information from a previous VI.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-27 Part 3: NI-DSP Function Reference DSP Equi-Ripple HighPass Generates a highpass FIR filter with equi-ripple characteristics using the Parks-McClellan algorithm and the number of taps, high frequency, stop frequency, and sampling frequency.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-28 NI-DSP SRM for LabVIEW for Windows error in (no error) contains the error information from a previous VI. If an error occurs, it is passed out error out and no other calls are made.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-29 Part 3: NI-DSP Function Reference DSP Equi-Ripple LowPass Generates a lowpass FIR filter with equi - ripple characteristics using the Parks - McClellan algorithm and the number of taps, pass frequency, stop frequency, and sampling frequency.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-30 NI-DSP SRM for LabVIEW for Windows DSP Exact Blackman Window Applies an Exact Blackman window to the input sequence X . If Y represents the output sequence Exact Blackman{X} , the elements of Y are obtained using the formula: y i = x i [0.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-31 Part 3: NI-DSP Function Reference DSP Exponential Window Applies an exponential window to the input sequence X .
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-32 NI-DSP SRM for LabVIEW for Windows DSP FHT Computes the fast Hartley transform (FHT) of the input sequence X . The Hartley transform of a function x(t) is defined as follows: X(f) = ∫ - ∞ ∞ x(t) cas(2 π ft) dt where cas(x) = cos(x) + sin(x).
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-33 Part 3: NI-DSP Function Reference DSP Flat Top Window Applies a flat top window to the input sequence X . If Y represents the output sequence Flattop{X} , the elements of Y are obtained using the formula: y i = x i [0.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-34 NI-DSP SRM for LabVIEW for Windows DSP Force Window Applies a force window to the input sequence X If Y represents the out.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-35 Part 3: NI-DSP Function Reference DSP Gaussian White Noise Generates a Gaussian distributed pseudorandom pattern whose statistical profile is as follows: ( µ , σ ) = (0, s) , where s is the absolute value of the specified standard deviation .
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-36 NI-DSP SRM for LabVIEW for Windows DSP General Cosine Window Applies a general cosine window to the input sequence X .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-37 Part 3: NI-DSP Function Reference DSP Hamming Window Applies a Hamming window to the input sequence X . If Y represents the output sequence Hamming {X} , the elements of Y are obtained from the formula: y i = x i [0.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-38 NI-DSP SRM for LabVIEW for Windows DSP Handle To Address Finds the actual DSP address value of DSP Handle Cluster that indicates a memory buffer on the DSP board.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-39 Part 3: NI-DSP Function Reference DSP Hanning Window Applies a Hanning window to the input sequence X . If Y represents the output sequence Hanning {X} , the elements of Y are obtained using the formula: y i = 0.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-40 NI-DSP SRM for LabVIEW for Windows DSP IIR Filter Performs IIR filtering on the X input array and reports the result in Y .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-41 Part 3: NI-DSP Function Reference Y out is a DSP Handle Cluster that is identical to Y in , but with the filtered data already stored in the memory buffer on the DSP board.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-42 NI-DSP SRM for LabVIEW for Windows DSP Impulse Pattern Generates an array containing an impulse pattern.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-43 Part 3: NI-DSP Function Reference DSP Impulse Train Pattern Generates a train of impulses of value amplitude at sample delay .
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-44 NI-DSP SRM for LabVIEW for Windows DSP Index Memory Indexes into a DSP buffer allocated in the memory space of the specified DSP board. The return value is another DSP Handle Cluster.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-45 Part 3: NI-DSP Function Reference DSP Init Memory Initializes the memory heaps and frees all allocations of memory on the specified DSP board. slot is the board ID number. slot defaults to 3.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-46 NI-DSP SRM for LabVIEW for Windows DSP Integral Performs the discrete integration of the sampled signal X . The integral F(t) of a function f(t) is defined as follows: F(t) = ∫ f(t) dt .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-47 Part 3: NI-DSP Function Reference DSP Inv Chebyshev Coeff Generates the set of filter coefficients to implement an inverse IIR filter as specified by the Chebyshev II Filter mode.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-48 NI-DSP SRM for LabVIEW for Windows error in (no error) contains the error information from a previous VI. If an error occurs, it is passed out error out and no other calls are made.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-49 Part 3: NI-DSP Function Reference DSP Inverse FHT Computes the inverse fast Hartley transform of the input sequence FHT {X} . The inverse Hartley transform of a function X(f) is defined as x(t) = ∫ - ∞ ∞ X(f) cas(2 π ft) df where cas(x) = cos(x) + sin(x).
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-50 NI-DSP SRM for LabVIEW for Windows DSP Kaiser-Bessel Window Applies a Kaiser-Bessel window to the input sequence X . If Y represents the output sequence Kaiser-Bessel{X} , the elements of Y are obtained using the formula: y i = x i I o β 1.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-51 Part 3: NI-DSP Function Reference DSP Linear Evaluation Performs a linear evaluation of the input array X.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-52 NI-DSP SRM for LabVIEW for Windows DSP Log Computes the logarithm base 10 of the X input array. The ith element of resulting array is obtained by using the following formula: y(i) = log10 (X(i)) * mult for i = 0, 1, 2, …, n-1, where n is the number of elements in X .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-53 Part 3: NI-DSP Function Reference DSP Max & Min Finds the maximum and minimum values in the input array, as well as the respective indices of the occurrence of the maximum and minimum values.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-54 NI-DSP SRM for LabVIEW for Windows DSP Median Filter Applies a median filter of rank to the input sequence X .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-55 Part 3: NI-DSP Function Reference DSP Multiply Multiply array X by array Y. The i th element of the output array Z is obtained using the following formula: Z(i) = X(i) * Y(i) for i = 0, 1, 2, …, n-1, where n is the smaller number of elements in X and Y .
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-56 NI-DSP SRM for LabVIEW for Windows DSP Parks-McClellan Generates a set of linear-phase finite impulse response multiband digital filter coefficients using the number of taps, sampling frequency, filter type, and Band Parameters .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-57 Part 3: NI-DSP Function Reference weighted ripple is a DSP Handle Cluster that indicates the memory buffer on the DSP board that contains the weighting factor for each band.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-58 NI-DSP SRM for LabVIEW for Windows The equi-ripple filters use a similar technique to filter the data.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-59 Part 3: NI-DSP Function Reference Parameter Discussion The weights are usually the same for every band and inversely proportional to frequency f for a differentiate. The amplitudes of the bands are usually the same for every band and form a slope for a differentiation.
NI-DSP Analysis VI Reference Chapter 2 Part 3: NI-DSP Function Reference 2-60 NI-DSP SRM for LabVIEW for Windows DSP Polar to Rectangular Converts a set of polar coordinate points ( Magnitude, Phase ) to a set of rectangular coordinate points ( X , Y ).
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-61 Part 3: NI-DSP Function Reference DSP Polynomial Evaluation Performs a polynomial evaluation on the input array X.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-62 Part 3: NI-DSP Function Reference DSP Power Spectrum Computes th e Power Spectrum of the input sequence X .
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-63 NI-DSP SRM for LabVIEW for Windows DSP Pulse Pattern Generates an array containing a pulse pattern.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-64 Part 3: NI-DSP Function Reference DSP Ramp Pattern Generates an array containing a ramp pattern.
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-65 NI-DSP SRM for LabVIEW for Windows DSP Random Pattern Generates a uniformly distributed pseudorandom pattern whose values are in the range [0:1]. The sequence is generated using the Very-Long-Cycle random number generator algorithm.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-66 Part 3: NI-DSP Function Reference DSP Rectangular To Polar Converts a set of rectangular coordinate points ( X , Y ) to a set of polar coordinate points ( Magnitude , Phase ).
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-67 NI-DSP SRM for LabVIEW for Windows DSP ReFFT Computes the Fast Fourier transform of a real input sequence X.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-68 Part 3: NI-DSP Function Reference DSP Reverse Reverse the order of the elements of the input array X. X is a DSP Handle Cluster that indicates the memory buffer on the DSP board that contains the input signal array X.
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-69 NI-DSP SRM for LabVIEW for Windows DSP Sawtooth Pattern Generate a sawtooth pattern with positive-slope, zero-crossing at sampl e dela y .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-70 Part 3: NI-DSP Function Reference DSP Set Set the elements of the input array X to the constant value set value . If the output Set {X} is represented by the sequence Y, then: y i = set value for i = 0, 1, 2, …, n-1 , where n is the number of elements in X .
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-71 NI-DSP SRM for LabVIEW for Windows DSP Sinc Pattern Generates an array containing a sinc pattern.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-72 Part 3: NI-DSP Function Reference DSP Sine Pattern Generates an array containing a sinusoidal pattern.
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-73 NI-DSP SRM for LabVIEW for Windows DSP Square Pattern Generates an array containing a square pattern.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-74 Part 3: NI-DSP Function Reference DSP Square Root Find a square root estimate of the absolute value of each element of the input array X .
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-75 NI-DSP SRM for LabVIEW for Windows DSP Sort Sort the input array X in ascending or descending order. X is a DSP Handle Cluster that indicates the memory buffer on the DSP board that contains the input signal array X.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-76 Part 3: NI-DSP Function Reference DSP Start Enables the DSP board to run. Use DSP Start with the DSP Load and DSP Reset VIs after downloading a custom application. slot is the board ID number .
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-77 NI-DSP SRM for LabVIEW for Windows DSP Subtract Subtract arra y Y from arra y X. The i th element of the output arra y Z is obtained using the following formula: Z(i) = X(i) -Y(i) .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-78 Part 3: NI-DSP Function Reference DSP TimeOut Selects the timeout limit in seconds to wait for a function on DSP board to complete execution. The default timeout setting at startup and after a DSP Reset call is 10 s.
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-79 NI-DSP SRM for LabVIEW for Windows DSP Triangle Pattern Generates an array containing a triangle pattern.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-80 Part 3: NI-DSP Function Reference Amplitude 0 0 Delay (s) W idth (s) delta t (s) The following figure illustrates how the pattern can vary with different values for the parameters.
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-81 NI-DSP SRM for LabVIEW for Windows DSP Triangular Train Generates a train of triangular pattern crossing value zero a t delay with positive slope.
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-82 Part 3: NI-DSP Function Reference DSP Triangular Window Applies a triangular window to the input sequence X .
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-83 NI-DSP SRM for LabVIEW for Windows DSP Uniform White Noise Generates a uniformly distributed pseudorandom pattern whose values are in the range [-a:a], where a is the absolute value of amplitude .
Chapter 2 NI-DSP Analysis VI Reference NI-DSP SRM for LabVIEW for Windows 2-84 Part 3: NI-DSP Function Reference DSP Unwrap Phase Unwraps the Phas e array by eliminating discontinuities whose absolute values exceed π . X is a DSP Handle Cluster that indicates the memory buffer on the DSP board that contains the input signal array.
NI-DSP Analysis VI Referenc e Chapter 2 Part 3: NI-DSP Function Referenc e 2-85 NI-DSP SRM for LabVIEW for Windows DSP Zero Padder Pads the input array with zero from starting index to the end of the input array.
NI-DSP SRM for LabVIEW for Windows 1-1 Part 4: NI-DSP Interface Utilities Chapter 1 Introduction to the NI-DSP Interface Utilities This chapter contains an overview of the NI-DSP Interface Utilities, installation instructions, and explains how to use the NI-DSP Interface Utilities.
Introduction to the NI-DSP Interface Utilities Chapter 1 Part 4: NI-DSP Interface Utilities 1-2 NI-DSP SRM for LabVIEW for Windows The Examples directory contains the files used in Part 4, Chapter 2, Getting Started with the NI-DSP Interface Utilities , to build a custom DSP Library.
NI-DSP SRM for LabVIEW for Windows 2-1 Part 4: NI-DSP Interface Utilities Chapter 2 Getting Started with the NI-DSP Interface Utilities This chapter contains a step-by-step example for building a custom DSP Library, creating a LabVIEW interface to a custom function, and executing the custom function from the LabVIEW environment.
Getting Started with the NI-DSP Interface Utilities Chapter 2 Part 4: NI-DSP Interface Utilities 2-2 NI-DSP SRM for LabVIEW for Windows long *n,*imin,*imax; { long i,j; float *x, small; float localmin.
Chapter 2 Getting Started with the NI-DSP Interface Utilities NI-DSP SRM for LabVIEW for Windows 2-3 Part 4: NI-DSP Interface Utilities • Parameters must be 32-bit floating-point, 32-bit integer sca.
Getting Started with the NI-DSP Interface Utilities Chapter 2 Part 4: NI-DSP Interface Utilities 2-4 NI-DSP SRM for LabVIEW for Windows • Return a 16-bit short integer error code–Every function should return an integer error code. A list of error codes that the existing DSP Library returns is given in Appendix A, Error Codes .
Chapter 2 Getting Started with the NI-DSP Interface Utilities NI-DSP SRM for LabVIEW for Windows 2-5 Part 4: NI-DSP Interface Utilities 2. Compile and/or Assemble Source Code Compile all new C source files and assemble all new assembly source files using the WE DSP32C C compiler and assembler.
Getting Started with the NI-DSP Interface Utilities Chapter 2 Part 4: NI-DSP Interface Utilities 2-6 NI-DSP SRM for LabVIEW for Windows Notice that functions accepted by the Dispatch application should have acceptable C syntax, that is, names may contain letters, numbers, and the underscore character but must start with a letter or underscore.
Chapter 2 Getting Started with the NI-DSP Interface Utilities NI-DSP SRM for LabVIEW for Windows 2-7 Part 4: NI-DSP Interface Utilities 5. Run the Build Dispatch Application to Generate an Assembly Dispatch File The next step is to generate an assembly dispatch file.
Getting Started with the NI-DSP Interface Utilities Chapter 2 Part 4: NI-DSP Interface Utilities 2-8 NI-DSP SRM for LabVIEW for Windows 6. Compile, Assemble, and Link Your Custom Library The last step in building a custom DSP Library is to compile, assemble, and link your custom library using the WE DSP32C tools.
Chapter 2 Getting Started with the NI-DSP Interface Utilities NI-DSP SRM for LabVIEW for Windows 2-9 Part 4: NI-DSP Interface Utilities The makelib.bat batch file performs the following: 1. makelib.bat assembles the file stackbld.s in the current directory using the AT&T d3as.
Getting Started with the NI-DSP Interface Utilities Chapter 2 Part 4: NI-DSP Interface Utilities 2-10 NI-DSP SRM for LabVIEW for Windows The array of DSP Handle Clusters holds all the references to arrays of data used by the custom DSP functions.
Getting Started with the NI-DSP Interface Utilities Chapter 2 Part 4: NI-DSP Interface Utilities 2-1 1 NI-DSP SRM for LabVIEW for Windows 2. Call the Custom VI After you bundle all of the parameters to arrays, connect each array to the corresponding terminals of the Custom VI.
Chapter 2 Getting Started with the NI-DSP Interface Utilities NI-DSP SRM for LabVIEW for Windows 2-1 2 Part 4: NI-DSP Interface Utilities Figure 2-8. Block Diagram–How to Index the Output Arrays of the Custom VI to Obtain Results o f gmaxmin.c Figure 2-9 shows the whole block diagram that uses the Custom VI to call the custom function gmaxmin.
Getting Started with the NI-DSP Interface Utilities Chapter 2 Part 4: NI-DSP Interface Utilities 2-1 3 NI-DSP SRM for LabVIEW for Windows Figure 2-10. Front Panel–Using the Custom VI to Call gmaxmin.c on the DSP Board from LabVIEW At this point, finish creating the VI interface to call your custom function on the DSP board from LabVIEW.
NI-DSP SRM for LabVIEW for Windows 3-1 Part 4: NI-DSP Interface Utilities Chapter 3 DSP Board Function Overview This chapter contains an overview of the prototypes of the C-callable NI-DSP Analysis functions on the DSP board that you can use in your custom programs.
DSP Board Function Overview Chapter 3 Part 4: NI-DSP Interface Utilities 3-2 NI-DSP SRM for LabVIEW for Windows Time Domain short DSP_Convolution (float * x, long n, float * y, long m, float * cxy) sh.
Chapter 3 DSP Board Function Overview NI-DSP SRM for LabVIEW for Windows 3-3 Part 4: NI-DSP Interface Utilities short DSP_Sqrt (float * x, long n, float * y) short DSP_Sub (float * x, float * y, long .
NI-DSP SRM for LabVIEW for Windows 4-1 Part 4: NI-DSP Interface Utilities Chapter 4 Using the DMA VIs ____________________________________________________________________________________________ This chapter describes two special VIs that transfer data between the host computer and the DSP board without interfering with the DSP board.
Using the DMA VIs Chapter 4 Part 4: NI-DSP Interface Utilities 4-2 NI-DSP SRM for LabVIEW for Windows The first example is a simple spectral analyzer. The main VI is called Analyzer VI. It uses the DSP Custom Function VI to call a custom function running on the board.
Chapter 4 Using the DMA VIs NI-DSP SRM for LabVIEW for Windows 4-3 Part 4: NI-DSP Interface Utilities DSP DMA Copy(DSP to LV) Copies a buffer of size elements from source(DSP Address) on the DSP board to one of the destination arrays in LabVIEW using the onboard DMA transfer method.
Using the DMA VIs Chapter 4 Part 4: NI-DSP Interface Utilities 4-4 NI-DSP SRM for LabVIEW for Windows DSP DMA Copy(LV to DSP) Copies the data in the LabVIEW array source to the destination(DSP Address) on the DSP board using the onboard DMA method. This VI uses only the DMA controller on the DSP board to transfer data.
© National Instruments Corporation A-1 NI-DSP SRM for LabVIEW for Windows Appendix A Error Codes This appendix contains a list of the error codes returned by the NI-DSP Analysis VIs and the corresponding error messages.
Error Codes Appendix A NI-DSP SRM for LabVIEW for Windows A-2 © National Instruments Corporation Table A-1. NI-DSP Analysis Library Error Codes (Continued) Error Number Error Name Description -21218 WinDutyCyclesErr The window duty cycle value must be between 0.
Appendix A Error Codes © National Instruments Corporation A-3 NI-DSP SRM for LabVIEW for Windows Table A-1. NI-DSP Analysis Library Error Codes (Continued) Error Number Error Name Description -21308 TransferSizeErr The size of requested block transfer does not have enough space allocated for it on the board.
Error Codes Appendix A NI-DSP SRM for LabVIEW for Windows A-4 © National Instruments Corporation Table A-1. NI-DSP Analysis Library Error Codes (Continued) Error Number Error Name Description -21343 IndexSizeOffsetErr The size+offset should be less than or equal to the size of the DSP Handle Cluster that you index into.
© National Instruments Corporation B-1 NI-DSP SRM for LabVIEW for Windows Appendix B Customer Communication For your convenience, this appendix contains forms to help you gather the information necessary to help us solve technical problems you might have as well as a form you can use to comment on the product documentation.
Technical Support Form Photocopy this form and update it each time you make changes to your software or hardware, and use the completed copy of this form as a reference for your current configuration.
NI-DSP for LabVIEW for Windows Hardware and Software Configuration Form Record the settings and revisions of your hardware and software on the line located to the right of each item. Complete this form each time you revise your software or hardware configuration, and use this form as a reference for your current configuration.
Documentation Comment Form National Instruments encourages you to comment on the documentation supplied with our products. This information helps us provide quality products to meet your needs.
© National Instruments Corporation Glossary-1 NI-DSP SRM for LabVIEW for Windows Glossary ___________________________________________________ Prefix Meaning Value n- nano- 10 -9 µ - micro- 10 -6 m- .
© National Instruments Corporation Index- 1 NI-DSP SRM for LabVIEW for Windows Index A Alloc_Mem function, Part 4: 2-3 array VIs DSP Absolute, Part 3: 2-4 DSP Add, Part 3: 2-5 DSP Clip, Part 3: 2-11 .
Index NI-DSP SRM for LabVIEW for Windows Index- 2 © National Instruments Corporation indexing output arrays to obtain results, Part 4: 2-10 to 2-12 linking, Part 4: 2-7 to 2-8 makelib.
Index © National Instruments Corporation Index- 3 NI-DSP SRM for LabVIEW for Windows DSP Ramp Pattern VI, Part 3: 2-61 DSP Random Pattern VI, Part 3: 2-62 DSP Rectangular to Polar VI; Part 3: 65 DSP .
Index NI-DSP SRM for LabVIEW for Windows Index- 4 © National Instruments Corporation L LabVIEW software. See NI-DSP for LabVIEW for Windows. Linear Constant Coefficient Difference Equation, Part 3: 1-5 linker file (ifile), Part 4: 2-4 linking custom libraries, Part 4: 2-7 to 2-8 lowpass filters.
Index © National Instruments Corporation Index- 5 NI-DSP SRM for LabVIEW for Windows DSP Reset, Part 3: 2-63 DSP Reverse, Part 3: 2-64 DSP Sawtooth Pattern, Part 3: 2-65 DSP Set, Part 3: 2-66 DSP Shi.
Index NI-DSP SRM for LabVIEW for Windows Index- 6 © National Instruments Corporation O object filenames, adding to linker file, Part 4: 2-4 output arrays, indexing, Part 4: 2-10 to 2-12 output data b.
Un point important après l'achat de l'appareil (ou même avant l'achat) est de lire le manuel d'utilisation. Nous devons le faire pour quelques raisons simples:
Si vous n'avez pas encore acheté National Instruments 320571-01 c'est un bon moment pour vous familiariser avec les données de base sur le produit. Consulter d'abord les pages initiales du manuel d'utilisation, que vous trouverez ci-dessus. Vous devriez y trouver les données techniques les plus importants du National Instruments 320571-01 - de cette manière, vous pouvez vérifier si l'équipement répond à vos besoins. Explorant les pages suivantes du manuel d'utilisation National Instruments 320571-01, vous apprendrez toutes les caractéristiques du produit et des informations sur son fonctionnement. Les informations sur le National Instruments 320571-01 va certainement vous aider à prendre une décision concernant l'achat.
Dans une situation où vous avez déjà le National Instruments 320571-01, mais vous avez pas encore lu le manuel d'utilisation, vous devez le faire pour les raisons décrites ci-dessus,. Vous saurez alors si vous avez correctement utilisé les fonctions disponibles, et si vous avez commis des erreurs qui peuvent réduire la durée de vie du National Instruments 320571-01.
Cependant, l'un des rôles les plus importants pour l'utilisateur joués par les manuels d'utilisateur est d'aider à résoudre les problèmes concernant le National Instruments 320571-01. Presque toujours, vous y trouverez Troubleshooting, soit les pannes et les défaillances les plus fréquentes de l'apparei National Instruments 320571-01 ainsi que les instructions sur la façon de les résoudre. Même si vous ne parvenez pas à résoudre le problème, le manuel d‘utilisation va vous montrer le chemin d'une nouvelle procédure – le contact avec le centre de service à la clientèle ou le service le plus proche.