Manuel d'utilisation / d'entretien du produit 300 du fabricant Teledyne
Aller à la page of 121
INSTRUCTION MANUAL MODEL 300 CARBON MONOXIDE ANALYZER © Teledyne Advanced Pollution Instrumentation (T-API) 9480 Carroll Park Drive San Diego, CA 92121-5201 Toll Free: 800 324-5190 Telephone: 858 657-9800 Fax: 858 657-9816 Email: api-sales@teled yne.
SAFETY MESSAGES Your safety and the safety of others is very important. We have provided many important safety m essages in this m anual. Please read these messages carefully. A safety message alerts you to potential ha zards that could hurt you or others.
TABLE OF CONTENTS SAFETY MESSAGES ................................................................................................... ii TABLE OF CONTENTS............................................................................................... iii TABLES .
5.2 Diagnostic tests .......................................................................................................53 6.0 HANDLING WARNING S ..............................................................................59 7.0 RS-232 COMMU NICATION S .
TABLES TABLE 1.1 STATUS OUTPUTS...................................................................................11 TABLE 1.1 FINAL TEST AND CALIBRATION VALUES .........................................19 TABLE 2.1 PASSWORD LEVELS ....................
FIGURE 10.1 OPTO PI CKUP WAVEFORM ..................................................................97 FIGURE 10.2 DETECTOR WAVEFORM ......................................................................97 FIGURE B.1 RS-232 PIN ASSIGNMENTS ...........
1.0 INTRODUCTION 1.1 Preface Teledyne API is pleased that you have purch ased the Model 300. We at Teledyne API will be pleased to provide you with any support required so that you may utilize our equipment to the fullest extent. The Teledyne API Model 300 keyboard/opera tor interface m akes the Teledyne API a very user-friendly system.
1.2 Warranty WARRANTY POLICY Prior to shipment, Teledyne AP I equipment is thoroughly in spected and tested. Should equipment failure occur, Tele dyne API assures its customer s that prompt service and support is available.
1.3 Principle of operation The detection and measurement of carbon mon oxide in the Model 300 is based on the absorption of Infra Red (IR) radiation by CO mo lecules at wave lengths near 4.7 microns. In practice, the Model 300 uses a high energy heated elem ent to generate broad-band IR light.
1.4 Specifications Ranges User selectable to any full-scale range from 1 ppm to 1,000 ppm Zero Noise < 0.025 ppm (rms) Span Noise < 0.5% of reading (rms) Lower Detectable Limit < 0.050 ppm Zero Drift (24 hours) * <0.1 ppm Zero Drift (7 days) * <0.
1.5 Installation and overview The Model 300 is shipped with the following standard equipment: 1. Power cord. 2. Instruction manual. CAUTION To avoid personal injury, always use two persons to lift and carry the Model 300. Upon receiving the Model 300 please do the following: 1.
CAUTION CHECK THAT ANALYZER IS SET UP FOR PROPER VOLTAGE AND FREQUENCY. CAUTION POWER PLUG MUST HAVE GROUND LUG. 7. Turn on the M300 by switching the switch on the lower right corner of the front panel (See Figure 2.
NOTE REPEATEDLY PRES SING ENTR TO GET THE INSTRUMENT TO DISPLAY THE CORRECT SPAN/ ZERO VALVE DOES NOT IMPROV E THE ACCURACY OF THE CALIBRATION, NOR DOES IT SPEED UP STABILIZATION. THE REAS ON FOR WAITING 5-10 MIN. IS THAT IT TAKES THE INSTRUMENT A PERIOD OF TIME TO ESTABLISH AN ACCURATE AVERAGE FOR THE SPAN/ZERO READING.
CARBON MONOXIDE ANALYZER FIGURE 1.1 P/N 02163G1 Teledyne API Model 300 CO Analyzer Instru ction Manual - Page 8.
REAR PANEL ELECTRICAL CONNECTIONS FIGURE 1.2 P/N 02163G1 Teledyne API Model 300 CO Analyzer Instru ction Manual - Page 9.
1.6 Electrical and pneumatic connections 1.6.1 Electrical connections Output #1 Carbon Monoxide concen tration - Chart Recorder (REC) Output #2 Carbon Monoxide concentration - Data Acquisition System .
OUTPUT # PIN PAIR (LOW, HIGH) STATUS CONDITION 1 1,2 ZERO CAL TRUE DURING ZERO CALIBRATION 2 3,4 SPAN CAL TRUE DURING SPAN CALIBRATION 3 5,6 FLOW ALARM TRUE IF A FLOW WARNING EXISTS 4 7,8 TEMP ALARM T.
A critical flow orifice is used to control the sam ple flow. The orifice is a precision- drilled sapphire jewel protec ted by a 20 micron sintered filter. The critical flow orifice never needs adjustment and maintains precise flow control as long as the ratio of the up- stream to down-stream pressur es is greater than .
1.6.8 Exhaust connections (see Figure 1.4) A single 1/4" O.D. tube should be connected from the Analyzer sample exhaust to an area outside of the room the Analyzer occu pies. The maximum length of the exhaust line should not exceed 30 feet. CAUTION Connect the exhaust fitting on the rear panel (See Fig.
FLOW DIAGRAM FIGURE 1.3 P/N 02163G1 Teledyne API Model 300 CO Analyzer Instru ction Manual - Page 14.
REAR PANEL PNEUMATIC CONNECTIONS FIGURE 1.4 P/N 02163G1 Teledyne API Model 300 CO Analyzer Instru ction Manual - Page 15.
REAR PANEL FIGURE 1.5 P/N 02163G1 Teledyne API Model 300 CO Analyzer Instru ction Manual - Page 16.
MODEL 300 ASSEMBLY LAYO UT FIGURE 1.6 P/N 02163G1 Teledyne API Model 300 CO Analyzer Instru ction Manual - Page 17.
1.7 Operation verification The Model 300 Analyzer is now ready for operation. 1. Read Sections 1.3 and all of Secti on 4 of the manual to understand the Analyzer operation. 2. Turn on the power by pressing the on/ off switch on the front panel (see Figure 2.
FINAL TEST AND CALIBRATION VALUES TEST VALUES INSTALLED OPTIONS RANGE _______PPM ZERO-SPAN VALVES CO MEAS _______mV RACK MOUNTS/SLIDES CO REF _______mV POWER ____/____ VOLTS/Hz MR RATIO ______.
1.8 Options 1.8.1 Rack mount with slides This option, including slides and rack mounti ng ears, permits the Analyzer to be m ounted in a standard 19" wide x 30" deep RETMA rack. NOTE A 1¾" MINIMUM SEPARATION BETWEEN EACH INSTRUMENT MUST BE MAINTAINED TO ALLO W FOR AIR CIRCULATION.
1.8.3 Internal zero/span The IZS option includes the valves and connec tion parts described a bove, and in addition, includes an internal zero air scrubber.
.
2.0 OPERATION 2.1 Key features The important features of the Teledyne AP I Model 300 CO Analyzer are listed below. 2.1.1 CO readout The Teledyne API Model 300 CO Analyzer c onstantly displays the current Carbon Monoxide reading (in PPM) in the upper righ t hand corner of the alphanumeric display.
2.1.6 RS-232 interface The Teledyne API CO Analyzer features an RS-232 interface which can output the instantaneous and/or average CO data to another com puter. It can also be used as a command and status channel to al low another com puter to cont rol the Analyze r.
2.2 Front panel This section describes the operator interface fr om the point of view of the front panel. The front panel consists of a 2-line by 40-ch aracter alphanumeric display, 8 push buttons, and 3 status LED’s. Each of th ese features is described below.
SYSTEM MODES Mode Meaning SAMPLE x (1) Sampling normally SAMPLE x (1) Flashing indicates adaptive filter is o n ZERO CAL x (2) Doing a zero check or adjust SPAN CAL x (2) Doing a span check or adjust .
WARNING MESSAGES Warning Message Meaning SYSTEM RESET Issued whenever Analyzer is powered on RAM INITIALIZED RAM was erased (incl. DAS reports) SOURCE WARNING IR s ource < 2500 OR >= 5000 mV BEN.
ILLUSTRATION OF NORMAL DISPLAY FIGURE 2.2 If TEST is pushed, the upper center display cycles through the menu of test param eters, e.g. Sample flow (see Table 2.3). If CALZ is pushed, the sequence of operations for setting the Analyzer zero is initiated(see Section 3.
STATUS LED’s LED State Meaning Green Off Not monitoring, DAS Disabled On Monitoring normally, taking DAS data Blinking Monitoring, HOLD-OFF mode on, no data to DAS (1) Yellow Off Auto Cal disabled O.
.
3.0 PERFORMANCE TESTING Zero/span checking and calibration of the Teled yne API CO Analyzer is divided into two sections. Chapter 3 discusses the different methods by which the Analyzer's zero and span settings may be checked and adjusted.
3.1.3 Dual Range Calibration If the analyzer is being operated in Dual Range mode or Auto-R anging m ode, then the High and Low ranges must be inde pendently calibrated. When the analyzer is in Dual or Auto Range mode you will be prompted to enter the range to calibrate whenever you enter a calibration command from the front panel.
3.3 Zero/span valves (Option) If the Zero/Span Valves option has been installed the operator can check the zero and span setpoints of the analy zer at any time by pressing the CALZ or CALS button. Zero and Span checks using the Zero/Span Valves option is identical to that described in Section 3.
minute (00 - 59). Enter the time of da y for calibration check and then press ENTR to accept the new time or EXIT to leave the tim e unchanged. Delta Days: The number of delta days is the number of days between each auto- sequence. Enter desired number of delay days(0-365) and press ENTR .
Range To Cal: This setup parameter is enabled only if the range m ode is set to Dual or Auto. This parameter determ ines which range the sequence will check. NOTE THE CALIBRATE FEATURE OF AUTO S EQUENCES ALTERS THE FORMULAS USED TO COMPUTE THE CARBON MONOXIDE READING .
4. STARTING TIME: 23:30 5. DELTA DAYS: 7 6. DELTA TIME: 00:00 7. DURATION: 15 8. CALIBRATE: OFF Example 4 : to perform zero check onc e per day at 10:30 pm and a span check once per week starting at 11:30 pm, 12/20/93. 1. Select any one of SEQx and program as example 1.
3.6 Remote zero/span check or adjustment (contact closure) In addition to adjustm ent via the front pane l b uttons, the Analyzer ca n be adjusted by means of two contact closures called EXT_ZERO_CAL and EXT_SPAN_CAL. (See Figure 1.2 for the location of the terminals for connection of the contacts on the rear panel.
NOTE REMOTE ZERO AND SPAN ADJUSTMENT ALTER THE FORMULAS USED TO COMPUTE THE CARBON MONOXIDE READINGS IF DYN_ZERO OR DYN_SPAN ARE ENABLED. THIS METHOD OF CALIBRATION IS NOT APPROVED BY USEPA AND IS NOT INTENDED TO REPLACE THE USEPA APPROVED CALIBRATION.
4.0 SETUP MODE This section describes the setup variables wh ich are used to configure the Analyzer. 4.1 Setup mode operation ALL the setup variables are stored in the Analyzer' s EEPROM and are retained during power off and even when new soft ware revisions are installed.
3. Slope and offset corrections are made to the CO concentra tion according to the equation: CORRECTE D CO NCENTRATI ON = SLOPE x MEASURED CONCE NTRATION + O FFSE T 4. The concentration value is linearize d over the range of 0 to 1000 ppm by a multi-point software look-up table and correc ted for temperature and pressure.
If the clock speed adjust variable has alrea dy been set to a value other than 0 and the speed is still too fast or too slow, ADD the re quired adjustment to the current value of the variable.
NEXT until D/A CALIBRATION is displayed and press ENTR. Press CFG to enter the D/A configuration menu. Use the NEXT and PREV buttons to select the desired analog output and press SET . Enter a value of from -500 mV to +500 mV (other ranges will ratio accordingly), followed by ENTR to accept the change, or EXIT to leave it unchanged.
4.11.1 Data Channels The function of the Data Channels is to store, report, and view data fro m the analyzer. The data may consist of carbon monoxide concen tration, or may be diagnostic data, such as the sample flow or detector output.
4.11.2 Setting-up Data Channels To setup a new data channel or modify an existing data channel, press SETUP-DAS- EDIT to get into the DAS edit mode. Once in the DAS edit mode, definitions of data chan.
Data Channel Properties Property Description Initial Setting Setting Range NAME The data channel’s name (primarily used for RS-232 access and reports) “NONE” Up to 6 letters or numbers EVENT The.
Triggering Events Name Description ATIMER Automatic timer expired EXITZR Exit zero calibration EXITSP Exit span calibration EXITMP Exit multi-point calib ration SLPCHG Slope changed REPORT PERIOD This property specifies the period between re ports (DAS entries).
exiting calibration it is desirable to take a single instantaneous reading using the INST mode . The table below summarizes the available sampling modes.
Data Parameters Name Description Units NONE COMEAS CO Measure signal mV COREF CO Reference signal mV SLOPE1 Slope of Range #1 SLOPE2 Slope of Range #2 OFSET1 Offset of Range #1 mV OFSET2 Offset of Ran.
Property Setting DESCRIPTION NAME “CO5MIN” EVENT ATIMER Sample when automatic timer is expired PARAMETERS CONC1,AVG SO 2 Range #1 concentration REPORT PERIOD 000:00:05 (i.e. 5 minutes) Average of 5 minutes * reported every 5 minutes NUMBER OF RECORDS 4032 (i.
Step Action Comment 1. Press SETUP-DAS- EDIT Enter DAS menu to edit Data Channels 2. Press PREV/NEXT Select Data Channel to edit 3. Press EDIT Edit selected Data Channel 4. Press SET> (5 times) Scroll through setup properties until RS-232 REPORT: OFF is displayed 5.
SETUP-RNGE-UNIT Set Meas urement Units ppm ppb. ppm. mg/m3, ug/m3 SETUP-PASS Password Enable ON OFF-ON SETUP-CLK-TIME Set Time-of-Day 00:00 00:00-23:59 SETUP-CLK-DATE Set Current Date 01 JAN 00 31 DEC 99 SETUP-MORE-COMM-BAUD RS-232 baud rate 2400 baud 300, 1200, 2400, 4800, 9600, 19.
.
5.0 DIAGNOSTICS The Teledyne API carbon monoxide analyzer c ontains two levels of diagnostics: test measurements which can be viewed at all times (except when in setup) by pressing TEST , and lower level diagnostic operations which can only be performed by pressing SETUP-DIAG .
The TEST button is used to scroll through the test m easurements until the one of interest is displayed. To turn the test on p ress the OFF/ON button. Viewing test m easurements in the diagnostic mode is especially useful for viewing the results of a diagnostic test.
# Signal Contro l Description 0 D ISP _B RO WNO UT NO Display brownout is used to keep the display from getting corrupted during low line voltage co nditions. Circuitry on the Power Suppl y board (00015) senses low line voltage and sets this bit. The CPU reads this and ge nerates the BROWNOUT_RST signal described below.
13 ST_FLOW_ALARM YES Sta t u s B i t - F l ow a l a r m Logic High = Sample fl ow out of spec Logic Low = Flows within spec 14 S T_ TEM P_ AL ARM Y ES Status Bit - Temperature alarm Logic High = One o.
28 BENCH_TEMP NO Optical Bench temp. Typically 2270 mV for 48 C 29 WHEEL_TEMP NO Filter W heel temp. Typically 4770 mV for 68 C 30 BOX_TEMP NO Internal analyzer tem p in mV 31 DCPS_VOLTAGE NO DC po w er s u pp ly com p os it e v ol ta ge output. Typically 2500 mV.
.
6.0 HANDLING WARNINGS When a system warning occurs, a w a rning message is displayed and the FAULT LED blinks. A warning indicates that somethi ng in the system needs to be checked or adjusted. Failure by the operator to respond to a warning may result in poor system performance and/or less accurate data acquisi tion.
.
7.0 RS-232 COMMUNICATIONS The Model 300 features a power ful RS-232 interface which is used both for reporting tes t results and for controlling the Analy zer from a host com puter. Because of the dual nature of the RS-232 interface, the message format has been carefully designed to accommodate both printers and host computers.
The "X" indicates the message type as s hown above in Table 7.1 and "COMMAND" is the command type, each of which is described individually b elow.
example), and the data point value (“6.8” ). Presumably the user (or rem ote computer) knows all of the other inform ation about the data point value. This report format is particularly usef ul when you are sam pling more than one data point because up to five data po ints m ay be printed per line.
WARNING MESSAGE CLEAR COMMANDS Command Warning Message Cleared "W WSYSRES<CRLF>" SYSTEM RESET "W WRAMINIT<CRLF>" RAM INITIALIZED "W WSOURCE<CRLF>" SOURC.
CONTROL COMMANDS Command Message Meaning ”C ZERO<CRLF>” Do a zero check ”C COMPUTE ZERO<CRLF>” Calibrate Zero point 1 ”C SPAN<CRLF>” Do a span check ”C COMPUTE SPAN<.
NOTE THE DIAGNOSTICS MODE MAY ONLY BE ENTERED VIA THE RS -232 PORT WHEN THE ANALYZER IS IN SAMPLE MODE. DIAGNOSTIC COMMANDS Command Function D ENTER SIG Enter diagno stic Signal I/O mode D EXIT Exit diagnostics mode D LIST Prints all Signal I/O values.
7.5 Test measurements All the test measurem ents which can be di splayed by pressing the TEST button are also available to the host computer via the RS- 232 interface. T he host computer should issue a request for a test measurem ent, and then the CPU will send the current value of the test measurement to the RS-232 output.
7.6 Viewing and modifying variables The most powerful feature of the RS-232 inte rf ace is the ability of a host computer to view and modify the Analyzer's internal vari ab les. Just as the operator m odifies the variables by means of the setup mode, the hos t computer modifies them by means of the RS-232 interface.
"V VARIABLE=VALUE WARNLO WA RNHI [DATALO-DATAHI] <CRL F>" which should reflect the new valu e. The values in square br ackets are not required for all variables. If needed, the values are include d on the comm and line, separated by spaces.
.
8.0 CALIBRATION This section describes a method of perform i ng a multi-point calibration of the Model 300 CO Analyzer and a method of performing a zero-span check. 8.1 REQUIRED EQUIPMENT AND GAS STANDARDS Zero air must be free of CO (less than 0.1 ppm of CO).
GAS GENERATION SYSTEM FIGURE 8.1 INLET VENTING RECOMMENDATIONS FIGURE 8.2 P/N 02163G1 Teledyne API Model 300 CO Analyzer Instru ction Manual - Page 72.
For minimum back-diffusion through the vent and for minimum back-pressure in the manifold, the following re lationship should be met: Q v x L ⎯⎯⎯⎯ = 500 Q a x D Where Q v is the vent flow in c.
There are two acceptable methods of generating accurate CO concentrations for calibrating the Model 300. One method uses a single cylinder of CO-in-ai r and a m eans of accurately diluting the cylinder gas with zero air. Th is is illustrated in Figure 8.
12. Set the calibrator to prod uce 75% to 85% of the UR L (upper range limit). This will be 40 ppm ±2.5 ppm on the 50 ppm range. 13. Allow the Analyzer to sample the CO concentration. 14. Push “CAL” 15. Enter password. (If enabled) 16. Push “CONC” 17.
If none of these help, see the TROUBLESHOOTING SECTION 10.0. Record all the Analyzer setup data from the display. Range D C P S Box Temp Wheel Temp Bench Temp Sample Te mp Sample Flow P r e s s u r e MR ratio (Measure/reference ratio) CO Reference CO Meas ure These data can be useful in future troubleshooting.
9.0 ADJUSTMENTS NOTE THE OPERATIONS OUTLINED IN THIS CHAPTER ARE TO BE PERFORMED BY QUALIFIED MAINTENANCE PERSONNE L ONLY! All adjustments to the Model 300 are easy to make. Pots and test points are readily accessible without removing any components. Figure 1.
M300 ELECTRICAL BLOCK DIAGRAM FIGURE 9.1 P/N 02163G1 Teledyne API Model 300 CO Analyzer Instru ction Manual - Page 78.
9.2 A/D - D/A Calibration procedure Due to the stability o f modern electronics , this procedure shou ld not have to be performed more than once a year or whenev er a m ajor sub-assembly is exchanged or whenever analog output volta ge range is changed .
To view the current dark offset, press SETUP-MORE-DARK-VIEW. Press EXIT when finished. No password is required to view the dark offset, only to change it. 9.4 Output voltage range changes Output voltage ranges are set by DIP Switch settings on the V/F board.
9.5 Flow readout adjustment The sensor module in the M300 consists of a flow sensor and a pressure sens or. See Figure 9.2 for a diagram of this module.
.
10.0 TROUBLESHOOTING NOTE THE OPERATIONS OUTLINED IN THIS CHAPTER ARE TO BE PERFORMED BY QUALIFIED MAINTENANCE PERSONNE L ONLY! CAUTION DO NOT DISCONNECT CPU OR OTHER DIGITAL CARDS WHILE UNDER POWER. 10.1 Overview The Model 300 has been designed to rapidly detect possible problems and allow their quick evaluation and repair.
10.2 Troubleshooting fundamental analyzer operation When the Analyzer is turned on, several ac tion s will normally occur which indicate the proper functioning of basic instrument sub-system s. These actions are: 1. The sample pump should start. 2. The green sample light on the front panel should turn on.
absence of these actions will usually indicat e either a CPU or Display failure. To determine which module is defective, perform the following procedure: 1. Turn off power. 2. Remove the ribbon cable from the CPU board to the Display; 3. Turn Power on.
BENCH HEAT SHUTDOWN Temperature control of the Optical bench cannot be maintained at its 48 o C set point Check Optical Bench heater and thermistor as described in Section 9.10 SAMPLE PRESSURE WARNING The Sample Pressure is less than 15"Hg or is greater than 35"Hg Check for pressure transducer problems as described in Sect 10.
10.4 Troubleshooting using test function values The Model 300 provides the capability to disp lay, on operator demand, the values of Test Functions which allow the observation of key analyzer operating parameters.
PRES The absolute pressure of the sample gas in the absorption cell 0"-1.0" Hg below ambient pressure Check for pneumatic system problems. See Sect. 10.6.1. Check for pressure transducer problems. See Sect. 10.6.5 SAMPLE FLOW Sample mass flow rate 720-880 scc/min Check for pneumatic system problems.
If all the checks described in the p receding s ections have b een successfully performed, the following will provide an itemization of th e most common dynamic problem s with recommended troubleshooting ch ecks and corrective actions: 10.5.1 Noisy or unstable readings at zero 1.
3. Check for dirty pneumatic system components and clean or replace as necessary as described in Section 11.3. 4. Check for proper adjustment of DA C and ADC electronics by performing the adjustment procedure in Section 9.2 5. Confirm the Sample Temperature, Sample Pressure, and Sample Flow readings are correct.
Low Flow: 1. Check for leaks as described in Section 11.2. Repair and re-check. 2. Check for dirty sample filte r or dirty orifice filter(s). 3. Check for partially plugged pneum atic lines, orif ices, or valves. High Flow: 1. The most common cause of high flow is a leak around an orifice.
If thermistor resistance(s) ar e within the proper range, check the temperature linearzation circuits on the DC Power Supply Board as described in Section 10.6.4. If temperature sensor readings appear accura te but contro l temperatures are not being maintained at their prop er value, check the operation of the h eaters as follows: 1.
Analog to Digital (A/D) conversion is accomplished by performing a Voltage to Frequency (V/F) conversion on the input signa l at IC U17 and running the frequency output to a counter compri sed of IC's U20, U21, U22. The full scale digital output of the counter section is 80,000 c ounts, giving an A/D resolution of 1 part in 80,000.
micro-processor is also used to adjust for offset and gain needed to match DAC outputs to external voltage standards, and no on board adjustments are needed or provided for this function. The outputs of all DAC's are "looped-back" to Analog input (via the Mother Board) channels.
V/F BOARD SWITCH SETTINGS - RANGE S FOR ANALOG OUTPUT User Set Switches Switch 100 mV Full Scale 1 V Full Scale 5 V Full Scale 10 V Full Scale S1 (Recorder Output) 1, 6 1, 5 1, 4 1, 3 S2 (DAS Output) 1, 6 1, 5 1, 4 1, 3 S3 (Test Output 1, 6, 7 1, 5, 7 1, 4, 7 1, 3, 7 S4 (Spare) 1, 6, 7 1, 5, 7 1, 4, 7 1, 3, 7 TABLE 10.
TP1 Sample Temp 30 o C=2.5 V, ± .125 V/ o C TP2 Optical Bench 50 o C=2.5 V, ± .125 V/ o C TP3 Filter Wheel Temp 50 o C=2.5 V, ± .125 V/ o C TP4 Chassis Temp 20 o C=2.5 V, ± .125 V/ o C If any of these voltages is incorrect, check therm istor operation as described in Section 10.
10.6.7 Checking the Opto Interrupter Correct operation of the Opto Interrupte r on the gas filte r wheel can be confirmed by connecting an oscilloscope U6, Pin 11 on th e Sync Demodulator board and comparing the waveform to Figure 10.1. The waveform s hould be symmetrical and 5 Volts peak to peak.
5. Confirm the wave from of the optic al signal by attachi ng an oscilloscope to the Sync Demodulator board a U2 Pin 7. The oscilloscope trace should appear like those shown in Figure 10.2. In particular the wave form should be symmetrical and should have distinct flat regi ons at the top and bottom of the pulses.
10.7 Warranty/repair questionnaire Organization:_____________________________________________________________ Contact: _________________________________________ Phone: ____________ Address ___________.
.
11.0 ROUTINE MAINTENANCE NOTE THE OPERATIONS OUTLINED IN THIS CHAPTER ARE TO BE PERFORMED BY QUALIFIED MAINTENANCE PERSONNE L ONLY! 11.1 Model 300 maintenance schedule The following are the recommende.
b. Open the front panel and remove th e tran sparent filte r cover and knurled retaining ring. c. Remove the teflon hold-down O-ring. d. Remove the old filter ele ment and discard. e. Install a new f ilter element in the f ilter cavity. Be careful with the element, it is fragile.
CAUTION BE CAREFUL USING THE BUBBLE SOLUTION. IF THERE IS NO INTERNAL PRESSURE, THE SOLUTION MAY ENTER AND CONTAMINATE THE CELL. DO NOT ATTEMPT TO USE THE BUBBLE SOLUTION WHILE THE UNIT IS UND ER VACUUM. THIS MAY CAUSE DAMAGE TO THE ANALYZER. USE ONLY BUBBLES, NOT LIQUID.
the front panel. It should read the same as the version num ber that was located on the top right corner of the label on the PROM. 8. Re-enter any non-default settings such as RANGE or ASEQ. Re-enter the CONC value in the CAL menu. Check all settings to m ake sure that expected setup parameters are present.
12.0 SPARE PARTS LISTS 12.1 SPARE PARTS FOR CE MARK UNITS Note: Use of replacement parts other th an those supplied by Teledyne API may result in non-compliance with European Standard EN 61010-1.
00969-01 FILTER, TFE, 47 MM, QTY 25 00982 ASSY, SYNCHRONOUS MOTOR 00987 OPTO INTERRUPTER ASSEMBLY 01037 CO/CO 2 CONVERTER ASSEMBLY 01070 INSTRUCTION MANUAL FOR M300 01077 FIELD MIRROR 01079 INPUT MIRR.
12.2 SPARE PARTS FOR NON-CE MARK UNITS PART NO. DESCRIPTION 00015 POWER SUPPLY BOARD 00094-10 ORIFICE, 13 MIL 00276-13 CPU BOARD 00329 THERMISTOR ASSY (885-071600) 00329-03 THER MISTOR ASSY : SAMP LE .
00960-02 M300 47 MM FILTER EXPE NDABLES KIT - KNF PU MP MODEL #MPU5247-N79 00960-03 M300 37 MM FILTER EXPE NDABLES KIT - KNF PU MP MODEL #NO5ATI 00960-04 M300 47 MM FILTER EXPE NDABLES KIT - KNF PU MP.
APPENDIX A - LIST OF AVAILABLE MODEL 300 OPTIONS RS-232 & Status Outputs Internal Zero/Span (IZS) with valves Rack Mount and Slides P/N 02163G1 Teledyne API Model 300 CO Analyzer Instru ction Manu.
.
APPENDIX B: TIPS ON CONNECTING THE TELEDYNE API ANALYZER RS-232 INTERFACE Teledyne API analyzers use the RS-232 communicat ions protocol to al low the instrum ent to be connected to a variety of computer based equipment.
4. Null modems - here the connector changes th e internal wiring so that DTE devices can become DCE or vice versa. The main internal ch ange is swap ping pin 2 and 3 so that data is transmitted and received on opposite pins. NOTE Null modems can also combin e gender changer or adapter features in the design.
The modem is configured as Data Communi cations Equipment (DCE), and may have additional signal requirements to enable transm ission. See modem troubleshooting section below. NOTE Modems are especially difficult because they may have pins that need to be at certain EI A RS-232 levels before the modem will transmit data.
.
APPENDIX C - ELECTRICAL DRAWING INDEX Drawing Number Title 00015 Assembly, DC Power Supply PCA 00016 Schematic, DC Power Supply PCA 00402 Assembly, Pneumatic Sensor PCA 00403 Schematic, Pneumatic Sens.
Un point important après l'achat de l'appareil (ou même avant l'achat) est de lire le manuel d'utilisation. Nous devons le faire pour quelques raisons simples:
Si vous n'avez pas encore acheté Teledyne 300 c'est un bon moment pour vous familiariser avec les données de base sur le produit. Consulter d'abord les pages initiales du manuel d'utilisation, que vous trouverez ci-dessus. Vous devriez y trouver les données techniques les plus importants du Teledyne 300 - de cette manière, vous pouvez vérifier si l'équipement répond à vos besoins. Explorant les pages suivantes du manuel d'utilisation Teledyne 300, vous apprendrez toutes les caractéristiques du produit et des informations sur son fonctionnement. Les informations sur le Teledyne 300 va certainement vous aider à prendre une décision concernant l'achat.
Dans une situation où vous avez déjà le Teledyne 300, mais vous avez pas encore lu le manuel d'utilisation, vous devez le faire pour les raisons décrites ci-dessus,. Vous saurez alors si vous avez correctement utilisé les fonctions disponibles, et si vous avez commis des erreurs qui peuvent réduire la durée de vie du Teledyne 300.
Cependant, l'un des rôles les plus importants pour l'utilisateur joués par les manuels d'utilisateur est d'aider à résoudre les problèmes concernant le Teledyne 300. Presque toujours, vous y trouverez Troubleshooting, soit les pannes et les défaillances les plus fréquentes de l'apparei Teledyne 300 ainsi que les instructions sur la façon de les résoudre. Même si vous ne parvenez pas à résoudre le problème, le manuel d‘utilisation va vous montrer le chemin d'une nouvelle procédure – le contact avec le centre de service à la clientèle ou le service le plus proche.