Manuel d'utilisation / d'entretien du produit 7SA511 du fabricant Siemens
Aller à la page of 199
7SA511 V2.2 Numerical Line Protection Relay Operator Manual Pow e r Blocked 1 2 3 4 5 6 7 8 9 0 1 2 3 4 1 1 1 1 1 Manual No. SG-8108-01.
.
7SA511 Line Protection Relay Table of Contents July 27, 1995 i Table of Contents User Guide Chapter 1 Introduction .......................................................................................... 1-1 Chapter 2 Product Description ...........
7SA511 Line Protection Relay Table of Contents ii July 27, 1995 The information contained herein is general in nature and not intended for specific application purposes. It does not relieve the user of responsibility to use sound practices in application, installation, operation, and maintenance of the equipment purchased.
7SA511 Line Protection Relay Chapter 1 July 27, 1995 1-1 Introduction Table of Contents 1. Introduction ................................................................................................ ........................ 1-3 1.1 Using This Manual .
7SA511 Line Protection Relay Introduction July 27, 1995 1-2 This page intentionally blank.
7SA511 Line Protection Relay Chapter 1 July 27, 1995 1-3 1. Introduction 1.1 Using This Manual This operator’s manual is intended to provide you with all the information you need to install and operate the Siemens 7SA511 Numerical Line Protection Relay.
7SA511 Line Protection Relay Introduction July 27, 1995 1-4 This manual assumes you are using the relay’s operator panel to program, maintain, and operate the relay. If you are using DIGSI ® software or some other application to control the relay, refer to the appropriate user guide when instructions in this manual are insufficient.
7SA511 Line Protection Relay Chapter 1 July 27, 1995 1-5 Terms annunciation 1. Activating the various relay outputs (LCD, LEDs, output relays) when events occurs. 2. Messages that appear on the operator panel LCD in the event log or target logs are also called annunciations .
7SA511 Line Protection Relay Introduction July 27, 1995 1-6 Terms pickup Activation of a protection function either through detection of a fault or as a result of a binary input. The current and voltage levels or ratios that cause a protection element to pick up are called pickup values.
7SA511 Line Protection Relay Chapter 1 July 27, 1995 1-7 Mou nting co nstr uction Fault detect ion option s Gr oun d faul t detec tion in put For ground ed systems, groun d current input for protected.
7SA511 Line Protection Relay Introduction July 27, 1995 1-8 This page intentionally blank.
7SA511 Line Protection Relay Chapter 2 July 27, 1995 2-1 Product Description Table of Contents 2. Product Description ................................................................................................ ............ 2-3 2.1 About the Relay .
7SA511 Line Protection Relay Product Description July 27, 1995 2-2 This page intentionally blank.
7SA511 Line Protection Relay Chapter 2 July 27, 1995 2-3 2. Product Description 2.1 About the Relay The 7SA511 line protection relay is a microprocessor-based relay designed to provide fast, reliable, and selective clearance of all kinds of ground and phase faults on overhead lines and cables being fed from one point or multiple points.
7SA511 Line Protection Relay Product Description July 27, 1995 2-4 2.2 Relay Features Microprocessor-Based Technology Fully Numerical Design Five Distance Zones, Phase and Ground Polygonal Impedance C.
7SA511 Line Protection Relay Chapter 2 July 27, 1995 2-5 choice of the data transmission rate for the front port. The operating settings also identify what information is to be displayed in each of the two lines of the LCD for operational messages and for fault messages.
7SA511 Line Protection Relay Product Description July 27, 1995 2-6 Address LCD Text Description 1400 DIST. PROT. CONTROLLED ZONES Set the parameters for controlled (overreach) zones.
7SA511 Line Protection Relay Chapter 2 July 27, 1995 2-7 Address LCD Text Description 5000 ANNUNCIATIONS 5100 OPERATIONAL ANNUNCIATIONS Display operational and status events in chronological order beginning with the latest event.
7SA511 Line Protection Relay Product Description July 27, 1995 2-8 Address LCD Text Description 8200 RESET Reset stored data including the LEDs, event log, and target log data. 8500 PARAMETER CHANGE-OVER Select which parameter set is to be active, and copy parameter sets.
7SA511 Line Protection Relay Chapter 2 July 27, 1995 2-9 Feature Description Ground fault detection Ground faults are detected by ground current ( I E )or displacement voltage ( V E ). Either the impedance of the three phase-to-phase loops or three phase-to-ground loops are calculated depending on the ground fault detection.
7SA511 Line Protection Relay Product Description July 27, 1995 2-10 2.4. 2 Emergency Overcurrent Protection During periods when the line secondary voltage signal is not available, the relay can be used as a two-stage, definite-time, overcurrent protection device.
7SA511 Line Protection Relay Chapter 2 July 27, 1995 2-11 2.4.6 High-Resistance Ground Fault Protection (optional) High-resistance ground fault protection is another optional feature of the relay (mod.
7SA511 Line Protection Relay Product Description July 27, 1995 2-12 2.4.7 Automatic Reclose (optional) Automatic reclose (AR) is an optional relay function (relay models 7SA511*-**A5*- ** B/C/F/G *). The automatic reclose function can minimize the system down time caused by temporary faults.
7SA511 Line Protection Relay Chapter 2 July 27, 1995 2-13 2.5 Additional Functions and Features of the Relay The rest of this chapter gives a general description about the remaining functions and features of the 7SA511 relay, as listed below: Secured data storage Serial data ports Multiple parameter sets (optional) 2.
7SA511 Line Protection Relay Product Description July 27, 1995 2-14 2.5.3 Multiple Parameter Sets (optional) Another optional feature of the 7SA511 relay is the ability to program multiple parameter sets (relay models 7SA511*-**A5*-** E/F/G *).
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-1 Acceptance Tests Table of Contents 3. Acceptance Tests ................................................................................................ ................ 3-3 3.1 Test Equipment .
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-2 This page intentionally blank.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-3 3. Acceptance Tests This section provides acceptance test procedures. Follow these procedures carefully to avoid possible injury and equipment damage.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-4 The acceptance tests described in the rest of this chapter verify the following are working: Power supply Metering capabilities Fault de.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-5 3.2 Energizing the Relay DANGER Haz ar do us volta ge s in th e equ ip men t. This can cau se sev ere personal i njury and equipm ent damage. T e stin g should be performed only by qualif ied person nel.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-6 3.2.2 Verifying the Language Setting The language setting cannot be determined from the initial display. To verify the language setting is English, follow this procedure: 1. Press the key.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-7 If the display shows . . . Then . . . DIRECT ADDRESS the language setting is correct. You can continue to operate the relay and enter an address number, or type in 0000 and press to return to the initial display.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-8 Note: Inaccurate test results may indicate that the relay settings being used are incorrect.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-9 Test Procedure 1. Measure the input current while varying the input voltage between the limits indicated in the table below. The values should be within the “Measured Current” range for the corresponding entry in Table 3-3.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-10 3.5 Metering Tests These procedures check the analog channels to the relay’s microprocessor. Known values of current and voltage are connected to the current and voltage inputs, and the accuracy of the relay measurement is checked.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-11 Voltage Metering Test This test uses a single-phase input and tests each voltage input separately. Test Procedure 1. Connect test equipment to the relay as indicated in Table 3-7. Table 3-7.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-12 3.6 Binary Input Test This test checks operation of the binary inputs. A voltage below the minimum value required for an active level (approx. 11 volts, provided that the threshold has not been increased as described in the “Installation” chapter.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-13 9. Move the voltage source to the next pair of terminals indicated in Table 3-11. Repeat steps 5 through 8 then exit the test procedure. Table 3-11. Binary Input Test Binary Input Connections Binary Input No.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-14 Table 3-13. LED Test Settings Addr. LCD Text 2601 EMERG.O/C ON 2605 I>> phases 2.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-15 3.8 Signal and Trip Relay Test This test checks the operation of a subset of the signal and trip relays. Factory presets are used for this test. A three-phase current large enough to cause the emergency overcurrent protection to pick up is applied to the three phase current inputs.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-16 Table 3-16. Signal and Trip Relay Test Settings Addr. LCD Text 2601 EMERG.O/C ON 2602 I>> phases 2.00 I/In 2603 T-I>> phases 0.30 s 5. Increase the input current (equally for all three phases) until it reaches 2.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-17 Test Procedure The test current is increased gradually in any phase until the element picks up. The pickup current value is then verified against the programmed settings. Ensure that the relay picks up at 1.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-18 2 3 1 0 0 10 20 30 40 50 60 70 Iph> > Iph> V(Iph >) V(Iph >>) I/I N V Picku p Figure 3-1 . Voltage-Controlled Overcurrent Fault Detector Characteristic. Prerequisite Setting Addr.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-19 6. Using a phase-to-phase input voltage, set the test voltage of the tested loop to approximately the rated voltage (V N SECOND at address 1104; factory preset is 100 V). Set the test current of both the phases to twice the setting value I PH > at address 1611 (factory preset is 0.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-20 I p ø p V P RA RAE R X+A X X-A Va l i d i t y range K R Va l i d i t y ra nge K R V alidity range K X V alidity r ange K X Figure 3-2. Polygonal Impedance Fault Detection Characteristic.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-21 where I P - test current I N - rated relay current V P - test voltage at threshold X ±A - setting value X+A for positive X-axis, or se.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-22 Feed a test current I P = 2I N into the loop under test. If the test voltage will exceed the rated voltage when the threshold is reached, reduce the test current (the minimum current I ph > at address 1621 or 1621 and overcurrent Iph>> at address 1601 must still be exceeded).
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-23 3.10.1 Independent Zones Z1, Z2, and Z3 For phase-to-ground testing, the test current is applied to one phase and to the ground current path. For testing phase-to-phase, the test current must flow through the tested phases in opposite directions.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-24 3.10.3 Coordination Times For each time element at least one additional dynamic test should be made to check the correct signaling. In this case, a short circuit approximately in the middle of the two time zones would be simulated.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-25 the voltage and current should be approximately 0 . Wait at least 1 second after completing input adjustments to ensure that all time delays have expired. Press the key. 6. Decrease the input voltage (equally for all three phases) to zero.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-26 Table 3-24 . Testing Permissive Underreach Transfer Trip (PUTT). Setting at Address 2102 PUTT Mode Action (Zone) Expected Result Z1B ACCELERATION Permissive Under- reach Transfer Trip in Zone Z1B Simulate a short circuit in zone Z1B, but beyond zone Z1.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-27 Table 3-26. Testing the POTT Receive Signal. Setting at Address 2202 POTT Mode Action Expected Result Z1B RELEASE or Z1B UNBLOCK Release modes in zone Z1B. Simulate a short circuit in zone Z1B but beyond zone Z1.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-28 3.13.1 Initial Setup 1. Connect test equipment to the relay as indicated in Table 3-27.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-29 Table 3-29. High-Set Overcurrent Test Settings Addr. LCD Text 2603 I> phases 4.00 I/I N 2608 IE> 4.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-30 Table 3-31. Overcurrent Test Current Input Connections Pickup Current Trip Delay LED High-Set 3A1 - 3A2 2.00I N 5% 0.30 s 10 ms 2 2A1 - 2A2 2.00I N 5% 0.30 s 10 ms 3 1A1 - 1A2 2.00I N 5% 0.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-31 Table 3-32 . Prerequisite Settings for the Directional Definite Time Test. Without Directional Comparison Addr. LCD Text (1st line) Description Setting 7808 EARTH FAULT Type of high-resistance ground fault protection DIRECTIONAL D.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-32 Note : The current and voltage applied in the same phase must be in phase opposition so that the relay trips in the “forwards” direction (function E/F T-> expir , FNo 772). 6. If directional comparison is turned on, the transmission circuit can be checked.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-33 Prerequisite Settings: Addr. LCD Text Description Setting 7810 AUTO RECL. Indicate whether or not the automatic reclose function exists.
7SA511 Line Protection Relay Acceptance Tests July 27, 1995 3-34 This page intenionally blank.
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-1 Installation Table of Contents 4. Installation ................................................................................................ .......................... 4-3 4.1 Receiving and Handling the Relay .
7SA511 Line Protection Relay Installation July 27, 1995 4-2 This page intentionally blank.
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-3 4. Installation To install the 7SA511 relay, you must be familiar with all applicable safety regulations from ANSI, IEC, NEC, and other pertinent standards. You should also have the following illustrations: Mounting diagram from section 4.
7SA511 Line Protection Relay Installation July 27, 1995 4-4 4.2 Storing the Relay Store the relay in a dry, clean room. The temperature range for storage is -13°F to +131°F (-25°C to +55°C). Refer to the technical specifications in Reference D of this manual for additional storage information.
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-5 4.3.1 Removing the Relay’s Front Cover Figure 4-2 illustrates how to remove the relay’s front cover. Once the cover is removed, continue with section 4.3.2, “ Removing/Installing Relay Module .
7SA511 Line Protection Relay Installation July 27, 1995 4-6 Rele asin g Lever V iew From T op CPU Board Pow er Supply (SV) Board GEA B oard ZEA Board AB C D Basic module Additional I /O Module Figure 4-3 .
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-7 Inserting the basic module: Position the top and bottom releasing levers fully to the left. Ensure that the printed circuit board edges are properly positioned to enter the guide slots. Push the module into the housing as far as it will go.
7SA511 Line Protection Relay Installation July 27, 1995 4-8 Printed Cir cuit Boar d GEA Printed Circuit Board ZEA Binary Input Binary Input Sol der Bridg e Sol der Bridg e 1 2 3 4 5 6 7 8 9 10 X21 X22 X23 X24 X7 X8 X9 X10 X1 1 X12 X21 X2 2 X2 3 X24 Solder Brid ge Sold er B ridg e X7 X8 X9 X1 0 X1 1 X12 Figure 4-4 .
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-9 Battery Installation Procedure When preparing the battery for installation, guard against t short-circuiting the battery leads. Referring to Figure 4-5, prepare the battery as follows: Cut both battery leads to a length of 0.
7SA511 Line Protection Relay Installation July 27, 1995 4-10 Minifuse for the power supp ly Jumper X50 Jump er X 51 Vi e w A Vi e w A Batt ery loca tion when installed - see V iew A Figure 4-6.
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-11 4.7 Mounting the Relay Figure 4-7 shows the mounting dimensions for the 7SA511 relay, in the flush mount configuration. Mounti ng plate Reset an d paging button s Side View 1.16 6.77 9.61 10.47 0.
7SA511 Line Protection Relay Installation July 27, 1995 4-12 4.8 Connecting the Relay to Your System You must reference several diagrams in this section to completely and accurately wire your relay. The connection diagrams are divided into three sections: 4.
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-13 V L1 V L1 V L2 V L2 V L3 V L3 V E V N Line- Neutral V ol tage Inp uts Line-Line V ol tage Inp uts Neutr al V o ltage I nput s Fac t ory Pr e se ts : 1 - >Reset LED 2-> V Tm c bT r i p 3 - >CB Aux.
7SA511 Line Protection Relay Installation July 27, 1995 4-14 7SA51 1*-*CA5 *-*B** 7SA51 1*-*CA5 *-*C** Co mm uni cati on Board SV RX GND 4A1 4A1 4A 4A2 4A2 4A3 4A3 4A4 4A4 TX GND Wire Port (3-wire, reduced RS-232-C Subset) Com mu ni cat ion Bo ar d SV F- SMA RX Fiber Optic Port F- SMA TX Figure 4-9 .
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-15 1 2 3 4 5 6 7 8 BA DC V olt a ge , Sig na l & Trip T ermi na l B loc ks 1 1 2 2 3 3 44 4C1 Horizontal row V ertical c olumn T erminal in th e block T erminal num ber example: Curre nt T e rmina l Bl ock #8 Ring lugs #10 Ring lugs Figure 4-10.
7SA511 Line Protection Relay Installation July 27, 1995 4-16 1 2 3 4 5 6 7 8 BA DC 1) Wi re comp res sion termination (0.1" Ø max) 2) Snap-in te rminal 1 24 3 1 R-2351 2 V ol t ag e , Si gn al & Tripp i ng T erminal Block 1) Wire c ompres sion termination (0.
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-17 DC B A 8 7 6 5 4 3 2 1 T rip Relay 1 T rip Relay 2 T rip Relay 3 Signal Relay 6 T rip Relay 5 T rip Relay 4 Signal Relay 5 Signal Relay 1 Sign.
7SA511 Line Protection Relay Installation July 27, 1995 4-18 4.8. 2 Current Transformer (CT) and Voltage Transformer (VT) Connection Diagrams The CT and VT connection diagrams included in this section are listed below. Figure 4-13 . CT Circuits Figure 4-14.
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-19 L1 L1 L1 L1 L2 L2 L2 L2 L3 L3 L3 L3 3 phase CT s with resid ual connection for ground faults 3 phase CT s with parallel line ground c urrent 3.
7SA511 Line Protection Relay Installation July 27, 1995 4-20 3 V . T . con nect ion with br ok en-de lta for op timu m dire ction al d et erm inati on 2V .
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-21 4.8.3 Pilot Wire Connection Diagrams The pilot wire connection diagrams included in this section are listed below. Figure 4-15 . Pilot Wire Connections for Overreaching Zone Comparison with 7PA5210.
7SA511 Line Protection Relay Installation July 27, 1995 4-22 13 13 3 3 16 16 6 6 11 11 1 1 14 14 4 4 R2 R2 R5 R5 R1 R4 R4 R1 K2 K2 K1 K1 16 16 12 12 17 17 19 19 18 18 8 8 5 5 2 2 7 7 a a b b d d c c R.
7SA511 Line Protection Relay Chapter 4 July 27, 1995 4-23 13 3 16 6 11 1 14 4 R2 R4 R5 R1 K2 K1 16 12 17 19 18 8 5 2 7 a b d c Receive T rip T ransmit +V 2 +V 1 -V 1 +V 1 +V 2 -V 1 -V 1 -V 1 Station A.
7SA511 Line Protection Relay Installation July 27, 1995 4-24 This page intentionally blank.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-1 Programming the Relay Table of Contents 5. Programming the Relay ................................................................................................ ........ 5-3 5.1 Introduction ..
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-2 5.16 Automatic Reclose (Optional) .................................................................................... 5-42 5.16.1 Device Configuration for Automatic Reclose (7900) .
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-3 5. Programming the Relay 5.1 Introduction Before operating the 7SA511 relay, you must program it specifically for your system.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-4 19 7 21 0 8 31 1 41 2 51 3 61 4 7 89 4 5 6 0 1 23 F No Ye s Ent er Bac k Space ∞ Pas s word Direct Addr T arget Reset Ta rg e t R.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-5 Display Panel This 32-character liquid crystal display (LCD) is made up of two lines of text, 16 characters each. There are two modes of operation for the LCD. The display mode is the normal operating mode.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-6 - Lights up RED to indicate that the relay has detected an internal problem and has blocked itself from operation.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-7 The functions of the keys on the operator panel are described below: Key Function Pr es s t hi s key to ... En te r the re la y pa sswor d. Dir ect ly a ccess an a d dres s. Di rec tly acc es s addr es s 5 000 (Ann unc iati ons) .
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-8 The procedures and tables given throughout this chapter identify the settings that require a numeric value within a specified range, and the text-based settings that are chosen from a predefined list of options.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-9 While the relay is in programming mode, the solid bar following the address number in the LCD will flash on and off. The relay remains in programming mode until you save the settings as discussed in section 5.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-10 5.3.4 Saving New Settings Before new settings are saved, all configuration and programming changes are stored in the volatile working memory (RAM).
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-11 Table 5-1 lists the relay presettings, the optional settings and the setting ranges available for the rear port. Compare these presettings to the information on the completed worksheets and determine which settings you need to change to match your operating environment.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-12 The following procedure enables the waveform capture function via the front serial port for the 7SA511 relay. It is a good example of how to use the operator panel to change settings, verify predefined settings, enter new data, and save the new settings.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-13 6. The factory presetting “2803 FAULT REC. : TO PC/PD” appears on the display. Since this example procedure is to set the waveform capture function for the front port, the presetting is the correct setting.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-14 10. To save the settings, press function key then press . Press the key in response to the “SAVE NEW SETTINGS?” message. The “NEW SETTINGS SAVED” confirmation message will appear on the display.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-15 Table 5-3. Relay 7SA511 Scope of Functions, Address Block 7800. Addr. LCD Text Description Preset Options Section 7801 DIST. PROT. Distance protection EXIST NON-EXIST 5.10 7802 DIST. F. DET. Type of fault detection OVERCURRENT U/I IMPEDANCE ZONE 0 7803 EMERG.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-16 Note: Addresses 7009 and 7010 are required to enable the relay for substation control and are therefore discussed in section 5.4. Table 5-4. Operating Parameters, Address 7000. Addr.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-17 5.7.2 Real-Time Clock (8100) The parameters in address block 8100 control the relay’s internal real-time clock and allow you to change the date and time.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-18 difference time, press the key, then press the key. The format for entering the difference time is the same as for a new time as described above. Synchronizing the Clock There are two ways to precisely synchronize the relay clock with another reference: 1.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-19 Only one parameter set is active at a time. You can change the active parameter set during relay operation (provided no protection functions are picked up) using the operator panel or through the binary inputs.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-20 The relay always operates with the active set of parameters (see section 5.8.2) regardless of which set is being displayed or configured.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-21 Table 5-5. Parameter Set Copy Options. Address Copy Action 8510 Copy ORIG.SET to Set A 8511 Copy ORIG.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-22 3. Press the key until the setting you want is displayed, then press to select the active parameter set. Table 5-6 identifies the parameter set presetting and options. Table 5-6. Parameter Changeover Options.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-23 Compare these presettings to the information on the completed worksheets and determine which settings you need to change to match your operating environment. When you have changed all of the necessary settings, follow the procedure described in section 5.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-24 sufficient. Compare these presettings to the information on the completed worksheets and determine which settings you need to change to match your operating environment. When you have changed all of the necessary settings, follow the procedure described in section 5.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-25 Table 5-9. Distance Protection Settings By Address Block. Addr. Block LCD Text Description 1200 DIST. PROT. GENERAL SETTINGS Indicate whether distance protection is On or Off, program the direction of the distance protection directional zone, and set the tirp delays T4 and T5.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-26 5.10.1 General Settings (1200) The 7SA511 relay consists of five distance zones and seven time delays: Independent distance zones:.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-27 5.10.2 Independent Zones Z1, Z2, Z3 (1300) Address block 1300 consists of the settings required for zones Z1, Z2, and Z3, which operate independently from one another and independently of the overreach zones Z1B and Z1L.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-28 Table 5-11. Distance Protection Settings for Independent Zones Z1, Z2, and Z3 Addr. LCD Text Zone & Description Preset Options/Range 1301 R1 Z1. Resistance for phase-to-phase faults 1.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-29 Table 5-12 lists the protection presettings and setting options for overreach zones Z1B and Z1L. Compare these presettings to the information on the completed worksheets and determine which settings you need to change to match your operating environment.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-30 Table 5-13. Overcurrent Fault Detection Settings. Addr. LCD Text Description Preset Options/Range 1601 Iph>> Overcurrent detection threshold value for phase currents 1.80 I/In 0.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-31 5.10.6 Polygonal Impedance Fault Detection This section applies only for relays programmed for polygonal impedance fault detection at address 7802 (see section 5.6). Skip this section if overcurrent fault detection or voltage controlled fault detection is being used.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-32 5.10.7 Determination of the Fault Loop for Grounded Systems (1700) In phase-selective fault detection systems, the currents and voltages of the fault loop are decisive when calculating the distance to fault.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-33 Table 5-17. Settings for Determination of the Fault Loop for Ungrounded Systems Addr. LCD Text Description Preset Options/Range 1801 TIe 1PHASE Pickup delay for ground current detection with single phase pickup 0.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-34 Table 5-18. Power Swing Protection Settings Addr. LCD Text Description Preset Options/Range 2002 P/S PROGR. Power swing protection program BLOCK ALL BLOCK Z1 ONLY BLOCK ALL BUT Z1 OUT OF STEP TRIP 2003 Delta R Distance R between power swing polygon and fault detection polygon 5.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-35 Table 5-19. Pilot Protection Permissive Underreach Transfer Settings Addr. LCD Text Description Preset Options/Range 2101 PUTT MODE Turn permi.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-36 Table 5-20. Pilot Protection Permissive Overreach Transfer Settings, Address Block 2200.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-37 have changed all of the necessary settings, follow the procedure described in section 5.3.4 to save the new settings. Prerequisite Setting: Addr. LCD Text Description Setting 7803 EMERG. O/C Emergency overcurrent protection function EXIST Table 5-21.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-38 Prerequisite Settings: Addr. LCD Text Description Preset 7807 ISOL. E/F Ground fault detection for ungrounded systems EXIST 1102 SYSTEMSTAR System neutral condition COMPENSATED ISOLATED Table 5-22.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-39 Each type of high-resistance ground fault protection, listed below, is discussed separately in this section. Directional, definite time overcurrent protection with nondirectional backup element.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-40 Table 5-23. Settings for Directional, Definite Time Overcurrent Protection With Nondirectional Backup Element Addr.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-41 Table 5-24. Settings for Directional, Definite Time Overcurrent Protection with Directional Comparison and Nondirectional Backup Element Addr. LCD Text Description Preset Options/Range 3105 T-DELAY Delay time for transmission and trip 0.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-42 5.16 Automatic Reclose (Optional) This section applies only to relays equipped with the optional automatic reclose (AR) function, model numbers 7SA511*-**A5*-** B/C/F/G *. Skip this section if your relay does not have this function.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-43 Note: Address number 7910 indicates how the circuit breaker test via binary input is carried out and is discussed, therefore, in Chapter 7 “Commissioning the Relay.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-44 Addr. LCD Text Description Preset Options/Range 3432 DAR PROG. Select DAR program - only after an unsuccessful RAR cycle; without .
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-45 5.18 Turning the Relay Functions On and Off As discussed in section 5.6, “Relay Scope of Functions (7800),” you must program the relay to recognize the various operating and protection functions as existing or non-existing.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-46 5.19 Configuration Settings (6000) The configuration settings tell the relay what action to take and how. Configuration is the process of assigning one or more logical functions to each of the physical input/output (I/O) units.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-47 4. There are two ways to assign a function to an I/O unit. (1) Entering the function number. a. Enter the function number (FNo) using the numeric keys. The function number being entered displays in line 2 as shown in the example below.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-48 5.19. 2 Presettings Table 5-30 below identifies the configuration presettings for each of the I/O units. Compare these settings to the data on the completed worksheets to see which settings you need to change.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-49 Addr. I/O Unit Index No. LCD Text (2nd line) FNo 6301 LED 1 001 >VT mcb Trip nm 014 002 Failure I nm 151 003 Failure Up-e nm 152 004 Failure Up-p nm 153 005 Failure Isymm nm 154 006 Failure Usymm nm 155 007 Failure Umeas nm 156 008 Fuse-Failure nm 157 009 Fail.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-50 Addr. I/O Unit Index No. LCD Text (2nd line) FNo 6404 Trip Relay 4 001 O/S Trip 531 002 Dis.
7SA511 Line Protection Relay Chapter 5 July 27, 1995 5-51 5.19.4 Signal Relays (6200) The signal relays are configured in address block 6200. The 7SA511 relay has 11 programmable signal relays. Up to 20 logical functions can be assigned to each signal relay.
7SA511 Line Protection Relay Programming the Relay July 27, 1995 5-52 This page intentionally blank.
7SA511 Line Protection Relay Chapter 6 July 27, 1995 6-1 Displaying System and Relay Information Table of Contents 6. Displaying System and Relay Information ............................................................................. 6-3 6.1 Using the Operator Panel to Display Information .
7SA511 Line Protection Relay Displaying System and Relay Information July 27, 1995 6-2 This page intentionally blank.
7SA511 Line Protection Relay Chapter 6 July 27, 1995 6-3 6. Displaying System and Relay Information This chapter describes the system and relay information available and tells you how to use the relay’s operator panel to display the information.
7SA511 Line Protection Relay Displaying System and Relay Information July 27, 1995 6-4 go to address blocks 5100, 5200, etc. You may also use the key to view any log address. Annunciation refers to the process of activating the various relay outputs when an event occurs.
7SA511 Line Protection Relay Chapter 6 July 27, 1995 6-5 6.2.1 Storage and Display Description Up to 50 messages can be stored in the event log. After all 50 memory locations are filled, additional messages replace the oldest messages in sequence.
7SA511 Line Protection Relay Displaying System and Relay Information July 27, 1995 6-6 LCD Text (2nd line) Description Possible Tag >1pole Trip External automatic reclose device is ready for single.
7SA511 Line Protection Relay Chapter 6 July 27, 1995 6-7 LCD Text (2nd line) Description Possible Tag Failure I Failure detected by measured current sum monitor C/G Failure Up-e Failure detected by me.
7SA511 Line Protection Relay Displaying System and Relay Information July 27, 1995 6-8 LCD Text (2nd line) Description Possible Tag Table Status End of table Follows last stored message if the table is not full Table overflow Last valid message if more than 50 messages are stored Table empty No event recorded (displayed in all unused addresses) 6.
7SA511 Line Protection Relay Chapter 6 July 27, 1995 6-9 The second message, 002, displays the time the fault event began including milliseconds. The second line contains the message “Fault.” Subsequent display messages will indicate all relay events that occur after initial detection of the fault until drop-out.
7SA511 Line Protection Relay Displaying System and Relay Information July 27, 1995 6-10 Distance protection fault detection in phase 1 and neutral: At 6 milliseconds after the fault was detected, distance protection issues a three-pole trip command.
7SA511 Line Protection Relay Chapter 6 July 27, 1995 6-11 6.3.3 Target Log Messages Table 6-3 lists all of the available fault messages. These messages fall into the following categories: General faul.
7SA511 Line Protection Relay Displaying System and Relay Information July 27, 1995 6-12 LCD Text (2nd line) Description Dist.TransBlo Transient blocking function of distance protection has operated Emergency Overcurrent Protection O/C Fault E Ground fault detection Flt.
7SA511 Line Protection Relay Chapter 6 July 27, 1995 6-13 6.4 Data Log for Ground Faults in Ungrounded Systems (5500) (Optional) Address block 5500, shown below, is used to store the data log for the last three ground faults in ungrounded systems (model number 7SA511*-**A5-*- 1 ***).
7SA511 Line Protection Relay Displaying System and Relay Information July 27, 1995 6-14 6.4.2 Isolated Ground Fault Data Log Messages Table 6-4 lists all of the available messages for ground fault detection in ungrounded systems. Only messages consistent with your relay configuration and options will appear in the display.
7SA511 Line Protection Relay Chapter 6 July 27, 1995 6-15 Table 6-5. Circuit Breaker Operation Statistics Addr. LCD Text Description 5601 RAR 1pole = Number of RAR attempts after single-pole trip (max. 9 digit value) 5602 RAR 3pole = Number of RAR attempts after three-pole trip (max.
7SA511 Line Protection Relay Displaying System and Relay Information July 27, 1995 6-16 Table 6-6. Operational Measured Values Addr. LCD Text Description 5701 IL1 = A Primary current in phase 1 5702 I.
7SA511 Line Protection Relay Chapter 6 July 27, 1995 6-17 Table 6-7. Ground Fault Measured Values Ungrounded Systems Addr. LCD Text Description 5801 Iea = A Primary active component of the ground curr.
7SA511 Line Protection Relay Displaying System and Relay Information July 27, 1995 6-18 Figure 6-1. Waveform Capture Display Example.
7SA511 Line Protection Relay Chapter 7 July 27, 1995 7-1 Commissioning the Relay Table of Contents 7. Commissioning the Relay ..................................................................................................... 7-3 7.1 Verifying the Installation and Relay Configuration .
7SA511 Line Protection Relay Commissioning the Relay July 27, 1995 7-2 This page intentionally blank.
7SA511 Line Protection Relay Chapter 7 July 27, 1995 7-3 7. Commissioning the Relay This chapter describes the commissioning procedures you may perform after the relay is installed, is programmed for your system, and is operating in its intended environment.
7SA511 Line Protection Relay Commissioning the Relay July 27, 1995 7-4 7.3 Guidelines for Commissioning the Relay Test accuracy is dependent directly on the test environment and the equipment used. Some cautions and recommended procedures associated with commissioning tests are listed below.
7SA511 Line Protection Relay Chapter 7 July 27, 1995 7-5 how to correctly set these parameters. The residual current must be fed to the ground current input of the relay for the current summation check to function properly.
7SA511 Line Protection Relay Commissioning the Relay July 27, 1995 7-6 Table 7-1 identifies the addresses used to run this test. Table 7-1. Address Block 4200 Test Options.
7SA511 Line Protection Relay Chapter 7 July 27, 1995 7-7 4. Press the key to continue to the next address, 4202 in the example shown below. 5. Press the key to confirm checking the active and reactive component of the load impedance for the indicated loop.
7SA511 Line Protection Relay Commissioning the Relay July 27, 1995 7-8 Direction charact eristi c Z Load Forwards Reverse + Z Load = X R ~45° Activ e pow er Negativ e reactiv e pow er Positi ve reactiv e power P ac tive I 2 P reactive I 2 Figure 7-1.
7SA511 Line Protection Relay Chapter 7 July 27, 1995 7-9 Prerequisite Settings: Addr. LCD Text Description Setting 7804 TELEPROTEC. Type of pilot protection scheme OVERREACH 2201 POTT MODE Turn the POTT protection scheme on and off ON 2202 POTT MODE Mode of operation for permis- sive overreach transfer scheme PILOT WIRE COMP.
7SA511 Line Protection Relay Commissioning the Relay July 27, 1995 7-10 2. Turn on the DC voltage for the reverse interlocking. The test as described above is repeated, with the same result. 3. Simulate a trip on each protective device on all outgoing feeders.
7SA511 Line Protection Relay Chapter 7 July 27, 1995 7-11 the opposite line end per the relay programming instructions given in Chapter 5, “Programming the Relay.” When delivered from the factory, the input for the circuit breaker auxiliary contact is INPUT 3, assigned to the function CB Aux Cont NO .
7SA511 Line Protection Relay Commissioning the Relay July 27, 1995 7-12 2. If address 2102 setting is . . . Then . . . Result Z1B ACCELERATION At the receiving end, simulate a fault within zone Z1B but beyond Z1. The protection trips at once (or T1B), without reception a delayed time element can only be effective.
7SA511 Line Protection Relay Chapter 7 July 27, 1995 7-13 the echo delay time of the relay at the opposite line end (0.2 seconds as delivered, see address 3211). c) Open the circuit breaker. Repeat these tests for the other line end. 3. Turn the distance protection function on at address 1201 (DIST.
7SA511 Line Protection Relay Commissioning the Relay July 27, 1995 7-14 2. Press the key to go to the next address as shown in the example display below. 3. Press the key to confirm starting the test. The message “CB CLOSED?” appears in the second line of the display as shown below.
7SA511 Line Protection Relay Chapter 7 July 27, 1995 7-15 Note: As a safety precaution, delete the assignment of FNo 880 to the output relay controlling the circuit breaker before returning the relay to service. 7.3.5 Automatic Reclose Test (4300) (Optional) This test procedure utilizes the optional internal automatic reclose function.
7SA511 Line Protection Relay Commissioning the Relay July 27, 1995 7-16 TestProcedure Note: Press the key at any time to abort a test procedure. 1. Select address block 4300. 2. Press the key to go to the next address as shown in the example display below.
7SA511 Line Protection Relay Chapter 7 July 27, 1995 7-17 4300 block. Only those tests options applicable to your relay will appear in its display. Each test option is followed by the “CB CLOSED?” message as explained in step 3 above. Table 7-3. Circuit Breaker Trip-Close Test Options, Address Block 4300.
7SA511 Line Protection Relay Commissioning the Relay July 27, 1995 7-18 This page intentionally blank.
7SA511 Line Protection Relay Chapter 8 July 27, 1995 8-1 Maintenance Table of Contents 8. Maintenance ................................................................................................ ......................... 8-3 8.1 Tracing Hardware and Software Faults .
7SA511 Line Protection Relay Maintenance July 27, 1995 8-2 This page intentionally blank.
7SA511 Line Protection Relay Chapter 8 July 27, 1995 8-3 8. Maintenance The 7SA511 relay is designed so that no special testing, calibration, or maintenance is required. All measurement and signal processing circuits are fully solid state and, with the exception of the internal backup battery, require no periodic maintenance.
7SA511 Line Protection Relay Maintenance July 27, 1995 8-4 8.1 Tracing Hardware and Software Faults As the relay’s protection is almost entirely self-monitored, hardware and software faults are automatically announced. With detected hardware faults, the relay blocks itself.
7SA511 Line Protection Relay Chapter 8 July 27, 1995 8-5 Minifuse for the power supp ly Jumper X50 Jump er X 51 Vi e w A Vi e w A Batt ery loca tion when installed - see V iew A Figure 8-1. Power Supply Minifuse and Backup Battery on the Basic GEA module.
7SA511 Line Protection Relay Maintenance July 27, 1995 8-6 occurs. This battery should be replaced at least every five years to avoid unexpected loss of fault data. A lithium battery 3 V/I Ah, type CR 1/2 AA, is the recommended type of replacement battery.
7SA511 Line Protection Relay Chapter 8 July 27, 1995 8-7 Table 8-1. Reset Data Options Addr. LCD Text Description Preset Options 8201 RESET LED ? Reset the LED memory? No Yes 8202 RESET COUNTERS ? Reset the CB operation counters? N o Yes 8203 RESET TOTAL Isc ? Reset interrupted current statistics? N o Ye s 8204 RESET OPERAT.
7SA511 Line Protection Relay Maintenance July 27, 1995 8-8 This page intentionally blank.
7SA511 Line Protection Relay Reference A July 27, 1995 A-1 Method of Operation Table of Contents A. Method of Operation ................................................................................................ .......... A- 5 A.1 Overview of Hardware and Protection Functions .
7SA511 Line Protection Relay Method of Operation A-2 July 27, 1995 A.11.2 Determination of the Faulted Phase .................................................................... A-61 A.11.3 Directional Determination ...................................
7SA511 Line Protection Relay Reference A July 27, 1995 A-3 Figure A-18 . Power Swing ................................................................................................... A-38 Figure A-19. Pickup Characteristic for the Detection of Power Swings .
7SA511 Line Protection Relay Method of Operation A-4 July 27, 1995 This page intentionally blank.
7SA511 Line Protection Relay Reference A July 27, 1995 A-5 A. Method of Operation A.1 Overview of Hardware and Protection Functions The 7SA511 relay is a microprocessor-based, high speed, numerical di.
7SA511 Line Protection Relay Method of Operation A-6 July 27, 1995 The relay also has 10 optically isolated binary inputs, 16 LEDs, 5 trip relays, and 11 signal relays.
7SA511 Line Protection Relay Reference A July 27, 1995 A-7 The microprocessor performs all impedance and overcurrent calculations and makes all protection logic decisions.
7SA511 Line Protection Relay Method of Operation A-8 July 27, 1995 When a fault is detected the following procedures are initiated: Trip delays Determination of the faulted line loop(s) Release of trip commands Auxiliary functions Identification of the faulty phase(s) The overcurrent fault detection unit is used for high fault current detection.
7SA511 Line Protection Relay Reference A July 27, 1995 A-9 0 0 0.2 0.4 0.6 0.8 1.0 1 2 3 4 I Ep i c k - u p I E reset 5 67 I ph max I N I E > I N Pickup 10% Figure A-2 .
7SA511 Line Protection Relay Method of Operation A-10 July 27, 1995 phase pickup without ground fault detection. In ungrounded system, the multi-phase loop is always selected in the case of a single-phase pickup without ground fault detection. The faulty phases are indicated (see Table A-1).
7SA511 Line Protection Relay Reference A July 27, 1995 A-11 phase angle with the R A 2 intersection applicable for phase angles above 45 , and the R A 1 intersection applicable for phase angles below 45 . For w ard direction Reverse direction X X +A X -A R A1 R A2 R AE R 45° Figure A-3.
7SA511 Line Protection Relay Method of Operation A-12 July 27, 1995 To avoid intermittent pickup signals near the perimeter of the characteristic, a hysteresis of 6% is provided. Pickup results for the measurement loop in which the impedance vector lies within the fault detection polygon (shaded area in Figure A-3).
7SA511 Line Protection Relay Reference A July 27, 1995 A-13 2 3 1 0 0 10 20 30 40 50 60 70 Iph> > Iph> V(Iph >) V(Iph >>) I/I N V Picku p Figure A-4 .
7SA511 Line Protection Relay Method of Operation A-14 July 27, 1995 In grounded systems, the measured line loop depends on the ground fault detection function (section A.2.1) and the parameter, 1PH FAULTS (address 1705), selected according to Table A- 2.
7SA511 Line Protection Relay Reference A July 27, 1995 A-15 the assignment of the phase currents, loop voltages and output results for single-phase pickup with ground fault detection only.
7SA511 Line Protection Relay Method of Operation A-16 July 27, 1995 L1 L2 L3 E Z L Z L V L1 V L2 I L1 I L2 Figure A-5 . Phase-to-Phase Short Circuit Loop For calculation of a phase-to-ground loop for a short circuit in L3-E (Figure A-6), observe that the impedance of the ground return path is not normally equal to the impedance of the phase.
7SA511 Line Protection Relay Reference A July 27, 1995 A-17 L1 L2 L3 E Z L Z E V L3 -E I L3 I E Figure A-6 . Phase-to-Ground Short Circuit Loop A.3.2 Fault Loop Determination in Grounded Systems In po.
7SA511 Line Protection Relay Method of Operation A-18 July 27, 1995 Table A-6 . Selected Measurement Quantities in Grounded Systems, with Overcurrent Fault Detection (With or Without Voltage Control) .
7SA511 Line Protection Relay Reference A July 27, 1995 A-19 Table A-7. Selected Measurement Quantities in Grounded Systems, with Impedance Fault Detection Fault Detection Phase Loops Selected Loop Sel.
Un point important après l'achat de l'appareil (ou même avant l'achat) est de lire le manuel d'utilisation. Nous devons le faire pour quelques raisons simples:
Si vous n'avez pas encore acheté Siemens 7SA511 c'est un bon moment pour vous familiariser avec les données de base sur le produit. Consulter d'abord les pages initiales du manuel d'utilisation, que vous trouverez ci-dessus. Vous devriez y trouver les données techniques les plus importants du Siemens 7SA511 - de cette manière, vous pouvez vérifier si l'équipement répond à vos besoins. Explorant les pages suivantes du manuel d'utilisation Siemens 7SA511, vous apprendrez toutes les caractéristiques du produit et des informations sur son fonctionnement. Les informations sur le Siemens 7SA511 va certainement vous aider à prendre une décision concernant l'achat.
Dans une situation où vous avez déjà le Siemens 7SA511, mais vous avez pas encore lu le manuel d'utilisation, vous devez le faire pour les raisons décrites ci-dessus,. Vous saurez alors si vous avez correctement utilisé les fonctions disponibles, et si vous avez commis des erreurs qui peuvent réduire la durée de vie du Siemens 7SA511.
Cependant, l'un des rôles les plus importants pour l'utilisateur joués par les manuels d'utilisateur est d'aider à résoudre les problèmes concernant le Siemens 7SA511. Presque toujours, vous y trouverez Troubleshooting, soit les pannes et les défaillances les plus fréquentes de l'apparei Siemens 7SA511 ainsi que les instructions sur la façon de les résoudre. Même si vous ne parvenez pas à résoudre le problème, le manuel d‘utilisation va vous montrer le chemin d'une nouvelle procédure – le contact avec le centre de service à la clientèle ou le service le plus proche.