Manuel d'utilisation / d'entretien du produit XMP 2600 du fabricant Xantrex
Aller à la page of 93
Smart choice for power XMP 2600 Programming Manual Xantrex Multiple Output Power System XMP 2600 www.xantrex.com.
Rev. 1.1 9/2003 XMP 2600 Programming Manual This docum ent contains propri etary informati on. All rights reser ved. Do not repr oduce this document or part of it. Do not translate to any oth er language. The informat ion containe d herein is subject to change without not ice.
What does this warranty cover and how long does it last? Limited W arranty This Limited Warranty is provided by Xa ntrex Technology, Inc. (“Xantrex”) and covers defects in workmanship and materials in your XMP 2600 P ower Supply .
What does this warranty not cover? This Limited Warranty does not cover normal wear and tear of the product or costs related to the removal, installation, or troubleshoot ing of the customer’s electrical systems. This warranty does not apply to a nd Xantrex will not be responsible for any defect in or damage to: a.
Information WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, UNLESS SPECIFICALLY AGREED TO BY IT IN WRITING, XANTREX a. MAKES NO WARRANTY AS TO THE ACCURACY, SUFFICIENCY OR SUITABILITY OF ANY TECHNICAL OR OTHE R INFORMATION PROVIDED IN MANUALS OR OTH ER DOCUMENTATION PROVIDED BY IT IN CONNECTION WITH THE PRODUCT; AND b.
Safety Summary IMPORTANT Read this safety summary before operating the unit. The following safety precautions are to be kept and observed by the user. Noncompliance with these safety rules ma y cause hazard and is exclusively under the user's responsibility.
Input Mains V olt age Rating The XMP 2600 operates at the follo wing mains nominal voltages: • 170Vac - 265Vac nominal (45 to 66Hz) • 120Vac nominal, up to 1KW output power (45 to 66Hz) Do not exceed this voltage range (nomin al), as deterioration of performance or damage to the unit is likely to occur.
WARNING Do not operate the unit with a missing module. Modules must be arranged consecutively from left to right. Unused module locations must be closed with ventilation obstructions. Operating the unit with missing modules or m issing internal ventilation obstructions ma y cause overheating and fire hazard.
About this manual This programming manual contains info rmation on programming the XMP 2600. Who should use this manual This manual is designed for users who unde rstand basic electrical theory, especially as applied to the operation of power supplies.
Table of Contents Table of contents Chapter 1: Interfacing th e XMP 2600 1 The GPIB interface 1 The serial interface 2 Serial Interface Capabilities 2 Computer Versus Terminal Operation 2 Programming messages formats 3 Listening Formats 3 Talking Formats 4 Chapter 2: Usage Guidelines 5 How to communicate with the XMP 2600 5 Using the comm.
Table of Contents Primary engine status structure 14 Summary of power modules status 14 Power modules status structure 14 What happens when power is turned on 15 Chapter 3: Basic Programming 17 Basic .
Table of Contents Output on/off 30 Other operations 30 Sequential Operations 30 Using hardware (TRIG and SYNC) to serialize operations 30 Using software (OPC mechanis m) to serialize operations 31 Con.
Table of Contents Primary Event Status Enable Register - set with PEE, read with PEE? 73 Status Byte Register - read with *STB? 74 Service Request Enable Register - set with *SRE, read with *SRE? 74 P.
Interfacing the XMP 2600 The GPIB interface 1 Interfacing the XMP 2600 The XMP 2600 has two types of interfaces u sed for remotely controlling it: a GPIB (IEEE 488) Interface and a Serial (RS232) Interface. The two interfaces differ only in the communication hardware and protocol.
The serial interface Interfacing the XMP 2600 The serial interface The Serial Interface is RS232 hardware i nterface with three types of op erating modes: Monitor Mode, Rem ote Terminal Control M ode and Remote Com puter Control Mode .
Interfacing the XMP 2600 Programming messages formats Programming messages format s Listening Format s Programming messages received by the XMP 2600 are comprised of the following elements: Program Message .......................... a programming command, query or data sent to the XMP 2600 from the Controller.
Programming messages formats Interfacing the XMP 2600 Here is an example of a Program Message: VSET 1,10.2 ; VLOAD? 1 <LF> Program Message Terminator <ch> Program Unit Message Separator Qu.
Usage Guidelines How to communicate with the XMP 2600 2 Usage Guidelines How to communicate with the XMP 2600 The purpose of this section is to give the user of the XMP 2600 power system basic guidelines on how to communicate with the Power Suppl y.
How to communicate with the XMP 2600 Usage Guidelines To use this synchronization feature properly, you must follow each message sent to the XMP 2600 with a read operation, reading one character and verifying its value (6).
Usage Guidelines Recommendations on using the XMP 2600 Starting a session Issue a CLR or RESET command (and wait for 15 seconds) when you start using the XMP 2600.
Recommendations on using the XMP 2600 Usage Guidelines Identify the XMP 2600 Using the *IDN? query, it is possible to verify that the device you are communicating with is indeed a XMP 2600 power system. The *IDN? query also returns the firmware re vision code for the XMP’s main controller.
Usage Guidelines Recommendations on using the XMP 2600 Check occupied channels Power Modules of the XMP 2600 have addresses that assign them to “channels” (or “slots”). Use the CHNL? query to find out which channels are occupied by Power Modules.
Recommendations on using the XMP 2600 Usage Guidelines Protection setup Use the PROT command to setup the way Over Voltage and Over Current protection values are assigned (automatically or manually). If you have decided to use manual prot ection settings, use the OVSET and OCSET commands to setup the desired protection values.
Usage Guidelines Handling SRQ and the IEEE488.2 Status St ructures To globally control the outputs of all the Power Modules, use the OUT command with no module number. Verification Read the output voltage and/or current of the activated Power Modules.
Handling SRQ and the IEEE488.2 Status St ructures Usage Guidelines The status reporting mechanisms of the XMP 2600 are rather complex. If you do not intend to use the advanced warnings and p rotec.
Usage Guidelines Handling SRQ and the IEEE488.2 Status St ructures Responding to SRQ event s The SRQ event of the IEEE488.2 bus is the summary of the entire Status Structure of the XMP 2600. The following paragraphs will show how to tr averse the Status Structure tree in order to find the cause of the generated SRQ.
Handling SRQ and the IEEE488.2 Status St ructures Usage Guidelines Remote communication time out The Remote Communications Time Out bit is the only element of this part of the Status Structure. The bit is set to 1 when the Time Out mechan ism is enabled and a Time Out event occurs.
Usage Guidelines Handling SRQ and the IEEE488.2 Status St ructures The first element of the Power Module Status Structure we should look at is the Events Register. The Events Register The Events Register, together with its corr esponding Events Enable Register generates the summary bit.
Handling SRQ and the IEEE488.2 Status St ructures Usage Guidelines The Power On Retain or Initialize feature is a nother powerful tool for controlling the turn on behavior of the XMP 2600.
Basic Programming Basic setup and usage 3 Basic Programming This chapter guides you through the pro cess of programming the XMP 2600 to provide power at the outputs of its Power Modules.
Output Setup Basic Programming The XMP 2600 has a host of features that enhance its usage. This section describes the parameters involved in setting-up the outputs of the XMP 260 0 Power Modules.
Basic Programming Output control where <value> can be programmed between the output setting value (Vset or Iset) and the output rating (Vmax or Imax) + 10% .
Current limiting schemes Basic Programming Issuing the OUT 0 command, globally disables the outputs of all the Power Modules. Turning the output on or off Use the OUT <ch>,1 command to turn on the output of a specific Power Module.
Basic Programming Reprogramming Delay Linear foldback When the linear output foldback mode of operation is selected (using the FOLD <ch>,2 command), when the output current of the Power Module r.
Reprogramming Delay Basic Programming To set the amount of Reprogramming Delay, use the command: DLY <ch>,<nn.n> where nn.n can range from 0 to 25.5 seconds. The normal value to use for the Reprogramm ing Delay period is 1.5 seconds. 22 XMP 2600 Programming Manual rev.
Advanced Features Workpoint window warning 4 Advanced Features This chapter introduces some of the advanced features of the XMP 2600 and provides guidelines on the usage of those features. W orkpoint window warning Power Modules of the XMP 2600 can monitor their outputs and warn the user if the output values exceed a defined range.
Workpoint window warning Advanced Features Note that the WHIGH and WLOW commands refer to both the voltage and current thresholds. Voltage mode example Lets say that the Power Module in channel 1 is to be set to provide 12V with a current limit of 10A.
Advanced Features Load protection The events enable masks Registered Power Module’s events can be enab led to seep in thru the status structure (using the CESE command) up to the main status byte and the SRQ generation mechanism (use the *SRE command to set the events that will generate an SRQ).
Arm, trigger, sync and ramp Advanced Features The high level thresholds act similar to the OVP and OCP features (but use a different mechanism) while the 2 low level threshol ds provide you with additional protection features: Under Voltage and Under Current Protection (UVP and UCP).
Advanced Features Arm, trigger, sync and ramp Output on While this operating mode is selected, a trigger supplied to the Pow er Module will cause its output to be turned on. I f the output of the Power Module was already turned on then it will remain on.
Arm, trigger, sync and ramp Advanced Features Output settle In this SYNC generation mode, a SYNC is produced when the output of the Power Module settles to within 2% of Vmax or Im ax from the programmed Vset or Iset.
Advanced Features Synchronization of operations While ramping its output, the Power Module u ses, for the ramp calculations, a resolution much higher than the output programming resolution. This fact ensures that no calculation-induced errors will affect the produced output ramp.
Synchronization of operations Advanced Features Output on/off To turn on or off a group of Power Modules (o r all of them) at the same time, turn on the Power Modules you wish to use (individually, us.
Advanced Features Synchronization of operations Using sof tware (OPC mechan ism) to serialize operations The Power Modules of the XMP 2600 generate an internal OPC (Operation Complete) event that informs the main controller when they have completed the current operation.
Selective shutdown Advanced Features Selective shut down XMP Power Modules are shutdown when they detect a fault. Since the XMP 2600 is mostly used in systems where several outputs f eed the sa me load it is desirable to have other Power Modules shutdown together with the faulty one.
Advanced Features Selective shutdown A cleared bit (having a value of 0) defines the module to be “single shutdown”, i.e. no other Power Modules are shutdown when this one detects a fault.
Selective shutdown Advanced Features TOEN value Operation upon Time Out event Operation upon TORST 0 None (the feature is disabled) none 1 Group shut-down (1) Restore output state of group (1) members.
Commands and Queries Reference Categories 5 Commands and Queries Reference This chapter describes all the commands a nd queries available when programming the XMP 2600 from a remote controller. The chapter provides a list of Commands and Queries grouped by category and an alphabe tical reference of Commands and Queries.
Categories Commands and Queries Reference GLBL inform the XMP 2600 Main Controller on shut-down behavior of the installed Power Modules. GLBL? return the current Global Shut-down set-up of all Power Modules. GPIB set-up the operating mode of the XMP 2600.
Commands and Queries Reference Categories Settings Commands and Queries DLY program the Power Module’s re-programming delay period. DLY? return the current re-programming delay period of the Power Module. FOLD program the type of Foldback to be used by the Power Module when Current Limit is reached.
Categories Commands and Queries Reference W arnings Commands and Queries IHIGH program the upper window warning level for the output current of the Power Module. IHIGH? return the current settings for the upper window warning level of the output current of the Power Module.
Commands and Queries Reference Categories S tatus Reporting Commands and Queries *CLS clears all Event Status Registers. *ESE assign new value to the Standard Event Status Enable Register. *ESE? return the value of the Standa rd Event Status Enable Register.
Alphabetical reference Commands and Queries Reference Alphabetical reference For every Command and Query, this section pr esents the following type of description: [M N E M O N I C ] {a description of the functi on performed by the Co mmand or the type of data returned by the Query} Syntax <Command or Query Syntax> not including terminators.
Commands and Queries Reference Alphabetical reference *ESR? return the value of the Standard Event Status Register. The value returned is a decimal number in the range 0 to 255 representing the bits of the Register. The register is cleared. <rqs> and <ist> ar e re- calculated.
Alphabetical reference Commands and Queries Reference *PRE assign new value to the Parallel Poll Enable Register. Re-calculates <ist>. Syntax *PRE <int> Parameters the value to be assigned to the Register - a decimal number in the range 0 to 255 representing bits in the Register.
Commands and Queries Reference Alphabetical reference *SAV stores settings of all the Power Modules (same as STO command). Syntax *SAV <int> Parameters a decimal number in the range 0 to 9 specifying the storage number the XMP 2600 will store the settings in.
Alphabetical reference Commands and Queries Reference *TST? initiates a self-test of the XMP 2600 main control circuits. The tested areas are: Controller Internal RAM, Tables Storage RAM, Settings Storage Areas and Buffers RAM.
Commands and Queries Reference Alphabetical reference CESE assign new value to the C hannels Event Status Enable Register. Re- calculates <rqs> and <ist>. Syntax CESE <int> Parameters the value to be assigned to the Register - a decimal number in the range 0 to 255 representing bits in the Register.
Alphabetical reference Commands and Queries Reference CMASK program the positive and negative edge masks of the Events Filter Mechanism. Syntax CMASK <ch>,<int>,<int> Parameters The number of the Channel to which the masks are being programmed.
Commands and Queries Reference Alphabetical reference CSTS? return the Power Module Status Structure data. The response is six decimal numbers representing the bits of the status registers.
Alphabetical reference Commands and Queries Reference DSP remove a user message from the XMP 2600 front panel display. Syntax DSP Parameters none Category System Type: Sequential DSP display a message on the XMP 2600 front panel display. Syntax DSP <string> Parameters the message to be displayed, limited to 21 characters.
Commands and Queries Reference Alphabetical reference GLBL inform the XMP 2600 Main Contro ller on shut-down behavior of the installed Power Modules. Syntax GLBL <int>,<int> Parameters the two integers ar e (respectively) the high and low parts of a 16 bits word where each bit represent a Power Module.
Alphabetical reference Commands and Queries Reference GRP? return the current definition of the group of Power Modules. The response is made up of two decimal numbers (each in the range 0 to 255) being the high (sent first) and low parts of a 16-bit word.
Commands and Queries Reference Alphabetical reference ILIM program an upper limit on s ubsequent programming of current settings for the Power Module. Syntax ILIM <ch>,<value> Parameters the number of the Po wer Module to be programmed. the value to become the new upper limit for ISET programming.
Alphabetical reference Commands and Queries Reference IMIN? return the value of the minimum programmable current limit for the Power Module. Syntax IMIN? <ch> Parameters the number of the channel to be queried. Category Settings Type: Sequential IOUT? return output current measurement of the Power Module.
Commands and Queries Reference Alphabetical reference MON change the operating mode of the RS232 serial communication interface into or out of Monitor Mode. Syntax MON <int> Parameters the requested mode of operation for the RS232 serial interface.
Alphabetical reference Commands and Queries Reference OUT program the state of the Global Output Enable Flag of the XMP 2600. Syntax OUT <int> Parameters the desired state of the Global Output Enable. A value of “0” disables and a value of “1” enables.
Commands and Queries Reference Alphabetical reference OVSET? return the current programme d value of the Power Module’s OVP threshold. The result is a <value>. Syntax: OVSET? <ch> Parameters the number of the channel to be queried. Category Protection Type: Sequential PEE assign new value to the P rimary Event Status Enable Register.
Alphabetical reference Commands and Queries Reference POLEN enables the XMP 2600 to accep t signed value parameters. When enabled, the sign of VSET programmed values will control the output polarity of the Power Module and voltage query replies will include a negative sign when appropriate.
Commands and Queries Reference Alphabetical reference PROT set-up the Protection Mode of the Power Module. Syntax PROT <ch>,<int> Parameters the number of the Po wer Module to be programmed. the desired Protection Mode: a value of “0” means Manual Protection Mode - in this mode the OVP and OCP thresholds are programmed by the user.
Alphabetical reference Commands and Queries Reference RAMP? return the current Ramp Duration for the Power Module. The result is a string in the following format: m:ss:nnn where m=minutes, ss=seconds and nnn=mili-seconds. Syntax RAMP? <ch> Parameters the number of the channel to be queried.
Commands and Queries Reference Alphabetical reference RIPL? return the current programmed output ripple for the Power Module. The result is two decimal numbers: th e first being the level (0t o 2) and the second being the frequency (1 to 7).
Alphabetical reference Commands and Queries Reference SHUT defines the optional events that will cause a single, group or gl obal shutdown. Syntax SHUT <int> Parameters the integer is a valu e i.
Commands and Queries Reference Alphabetical reference STEP program a Sequence Program Step. Syntax STEP <int>,<step_delay>,<int>[,<int>] Parameters the number of the Step to be programmed. the amount of time to delay the Step Operation.
Alphabetical reference Commands and Queries Reference SYNC program the Power Module’s Sync Pulse Generation Enable Event. Syntax SYNC <ch>,<int> Parameters the number of the Po wer Module to be programmed.
Commands and Queries Reference Alphabetical reference TOEN? queries the current state of the re mote communication time out feature. Syntax TOEN? Parameters none Category System Type: Sequential TOGRP defines the group of channels to be shut-down when a remote communication time out occurs.
Alphabetical reference Commands and Queries Reference TOSET set the remote communication time out period. Syntax TOSET <int> Parameters the am ount of time to wait between remote communication events before a time out event is declared. The allowed values are in the range 1 to 255 and the time units are seconds.
Commands and Queries Reference Alphabetical reference TRIGER send a trigger to the Power Module. Syntax TRIGER <ch> Parameters the num ber of the Power Module to send the trigger to. Category Trigger and S ync Type: Overlapped VALL? return load voltage measurement s of all installed Power Modules.
Alphabetical reference Commands and Queries Reference VLIM? return the current value of the upper limit on VSET programming. The response is a <value>. Syntax VLIM? <ch> Parameters the number of the channel to be queried. Category Settings Type: Sequential VLOAD? return load voltage measurement of the Power Module.
Commands and Queries Reference Alphabetical reference VSET program the voltage limiting of the Power Module’s output. Syntax VSET <ch>,<value> Parameters the number of the Po wer Module to be programmed. the value to be set as the Power Module ’ s load voltage limit.
Alphabetical reference Commands and Queries Reference 68 XMP 2600 Programming Manual rev. 1.1.
Status reporting IEEE 488.2 compat ible Status St ructures 6 Status reporting IEEE 488.2 comp atible St atus S tructures Power Modules S tatus S tructure The Power Modules Status Structure is read with one Query: CSTS? <ch>.
IEEE 488.2 compat ible Status St ructures Status reporting The Output Register 0 0 0 ARM RLY POL ON STBY ARM ............... the Power Module is Armed (new SET and PROT valu es are stored and do not effect the output) RLY ................ Output Disconnect Relay is closed (0) or open (1).
Status reporting IEEE 488.2 compat ible Status St ructures The Event s Filtering Positive Mask Register SENSE WARN CONF TEST FOLD BACK MODE CHNG LOW CURR.
IEEE 488.2 compat ible Status St ructures Status reporting The following illustrates the Po wer Module Status Structure: sense warning condition Error Code F aults Output Warnings new new any positive.
Status reporting IEEE 488.2 compat ible Status St ructures not finished reading a response (from the Output Queue) and is already sending new data. Lastly, Query Error is reported when there is a Deadlock situation: Output Queue and Input Queue are both full.
IEEE 488.2 compat ible Status St ructures Status reporting S t atus Byte Register - read with *STB? read by Serial Poll RQS 0 ESB MAV Comm. T.O. PRIM ERR 0 SRQ IS MSS read by *STB? RQS................. the IEEE 488.1 Service Request Flag read by Serial Poll.
Status reporting Self Test Results The following illustrates the System Status Structure: EVENT OR & ENABLE PRIMARY OUTPUT SET QUEUE EVENT OR & channels ENABLE SRQ STATUS GEN OR & & OR.
Self Test Results Status reporting BYTE 1 ANLG MUX DAC ANLG REF PWR SUPPL NOVR AM_B NOVR AM_A PROG MEM INT RAM INT_RAM ....... Processor Memory. PROG_MEM .. Program Memory. NOVRAM_A .. Non-Volatile Memory A. NOVRAM_B .. Non-Volatile Memory B. PWR_SUPPL .
Status reporting Error Codes summary Error Codes summary The following is a list of error codes ge nerated by the Power Modules and the main controller of the XMP 2600. Errors Reported by the Power Module Power Modules 1 Processor Watchdog was activated.
Error Codes summary Status reporting 16 Internal Communications Time Out for Power Module in channel 1. 17 Internal Communications Time Out for Power Module in channel 2. 18 Internal Communications Time Out for Power Module in channel 3. 19 Internal Communications Time Out for Power Module in channel 4.
Status reporting Error Codes summary XMP 2600 Programming Manual rev. 1.1 79 79 Can not turn Global On while a Channel Shut is in effect. 80 No Polarity Relays installed for the referenced Power Module. 81 No Disconnect Relay installed for the referenced Power Module.
Xantrex Technology Inc. 604 422 2777 Tel 604 420 2145 Fax 800 670 0707 Toll Free North America customerservice@xantrex.com www.xantrex.com TM-XMPM-11XN Printed in Israel.
Un point important après l'achat de l'appareil (ou même avant l'achat) est de lire le manuel d'utilisation. Nous devons le faire pour quelques raisons simples:
Si vous n'avez pas encore acheté Xantrex XMP 2600 c'est un bon moment pour vous familiariser avec les données de base sur le produit. Consulter d'abord les pages initiales du manuel d'utilisation, que vous trouverez ci-dessus. Vous devriez y trouver les données techniques les plus importants du Xantrex XMP 2600 - de cette manière, vous pouvez vérifier si l'équipement répond à vos besoins. Explorant les pages suivantes du manuel d'utilisation Xantrex XMP 2600, vous apprendrez toutes les caractéristiques du produit et des informations sur son fonctionnement. Les informations sur le Xantrex XMP 2600 va certainement vous aider à prendre une décision concernant l'achat.
Dans une situation où vous avez déjà le Xantrex XMP 2600, mais vous avez pas encore lu le manuel d'utilisation, vous devez le faire pour les raisons décrites ci-dessus,. Vous saurez alors si vous avez correctement utilisé les fonctions disponibles, et si vous avez commis des erreurs qui peuvent réduire la durée de vie du Xantrex XMP 2600.
Cependant, l'un des rôles les plus importants pour l'utilisateur joués par les manuels d'utilisateur est d'aider à résoudre les problèmes concernant le Xantrex XMP 2600. Presque toujours, vous y trouverez Troubleshooting, soit les pannes et les défaillances les plus fréquentes de l'apparei Xantrex XMP 2600 ainsi que les instructions sur la façon de les résoudre. Même si vous ne parvenez pas à résoudre le problème, le manuel d‘utilisation va vous montrer le chemin d'une nouvelle procédure – le contact avec le centre de service à la clientèle ou le service le plus proche.