Manuel d'utilisation / d'entretien du produit FX5 du fabricant Mitsubishi Electronics
Aller à la page of 306
MELSEC iQ-F FX5 User's Manual (Application).
.
1 SAFETY PRECAUTIONS (Read these precau ti ons before use.) Before using this product, please read this manual and the relevant manuals introdu ced in this manual carefully and pay attention to safety in order to handle the product correctly . This manual classifies the safety precautions into two categories: [ W ARNING] and [ CAUTION].
2 [DESIGN PRECAUTIONS] [INST ALLA TION PRECAUTIONS] [WIRING PRECAUTIONS] CAUTION ● After the CPU module is powered on or is reset, the time taken to enter the RUN status varies depending on the system configuration, parameter settings, and/or prog ram size.
3 [ST AR TUP AND MAINTENANCE PRECAUTIONS] [PRECAUTIONS IN OPERA TION] WA R N I N G ● Do not touch any terminal while the PLC's power is on . Doing so may c ause electric shock or malfunctions.
4 INTRODUCTION This manual contains text, diagrams and expla nations which will guide the reader in the correct installation, safe use and operation of the FX5 Programmable Contro llers and shou ld be read and understood before attempting to install or use the module.
5 MEMO.
6 CONTENTS SAFETY PRECAUTIO NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7 CONTENTS CHAPTER 6 CLOCK FUNCTION 46 6.1 T ime S etting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Clock data . . . . . . . . . . . . . .
8 CHAPTER 10 CONST ANT SCAN 84 10.1 Constant scan settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 CHAPTER 1 1 REMOTE OPERA TION 86 1 1.1 Remote RUN/ STOP .
9 CONTENTS CHAPTER 18 SECURITY FUNCTIONS 1 13 CHAPTER 19 BUIL T -IN I/O FUNCTION 1 14 19.1 High-speed C ounter Func tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 14 High-speed co unter functi on overview .
10 FX3-compat ible pulse catch functi on execution procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 9 FX3-compatibl e pulse cat ch parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11 CONTENTS 21.5 Inde x Registe rs (Z/LZ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 7 T y pes of in dex regist ers. . . . . . . . . . . . . . . . . . . . . .
12 RELEV ANT MANUALS User's manuals for th e applicable modules TERMS Unless otherwise specified, this manual uses the following terms. • indicates a variable portion used to collectively call multiple models or versions.
13 • Input module (extension co nnector type) Generic term for FX5-C32EX/D and FX5-C32EX/ DS Output module Generic term for output module s (ext ension cable type) and output module s (extension con.
14 MEMO.
15 PA R T 1 P ART 1 PROGRAMMING This part consists of the following chapters. 1 PROGRAM EXECUTION 2 PROCESSING OF OPERA TIONS ACCORD ING TO CPU MODULE OPERA TION ST A TUS 3 CPU MODULE MEMOR Y CONFIGUR.
16 1 PROGRAM EXECUTION 1.1 Scan Configuration 1 PROGRAM EXECUTION 1.1 Scan Configuration The configuration of th e scan of the CPU module is explained below . Initial processing and initialization processing in RUN mode Initial processing according to CPU module status and init ial ization processing in the RUN status are explained below .
1 PROGRAM EXECUTION 1.1 Scan Configuration 17 1 I/O refresh Execute I/O refresh before starting program operations. • Input ON/OFF data input from input module/intelligent function module to CPU mod.
18 1 PROGRAM EXECUTION 1.2 Scan Time 1.2 Scan T ime The CPU module repeats the followi ng processing. The scan time is the sum total of each process and execution time. *1 This process is included in the initial scan time. Initial scan time This refers to the initial scan time when the CPU modul e is in the RUN mode.
1 PROGRAM EXECUTION 1.3 Program Execution Sequence 19 1 1.3 Program Execution Sequence When the CPU module enters the RUN status, the programs are executed successively acco rding to the execution type of the programs and execution order setting.
20 1 PROGRAM EXECUTION 1.4 Execution Type of Program 1.4 Execution T ype of Program Set the program execution conditions. Initial execution type program This program type is executed only once when th e CPU mo dule changes from the STOP/P AUSE to the RUN status.
1 PROGRAM EXECUTION 1.4 Execution Type of Program 21 1 Scan execution type program This program type is executed only once pe r scan from the scan foll owing the scan w here an initial executi on type program was executed.
22 1 PROGRAM EXECUTION 1.4 Execution Type of Program Make the following settings for fixed scan execution type program in CPU parameter . • Interrupt pointer setting (Interrupt from internal timer: .
1 PROGRAM EXECUTION 1.4 Execution Type of Program 23 1 Action when the execution condition is satisfied Performs the following acti on. ■ If the execution condition is satisfied before the interrupt is enabled by the EI instruction The program enters the waiting status and is executed when the interrupt i s enabled.
24 1 PROGRAM EXECUTION 1.4 Execution Type of Program ■ Operation in the fixed scan execution mo de This section describes the operation which can be performed in the fi xed scan execution mode.
1 PROGRAM EXECUTION 1.4 Execution Type of Program 25 1 Event execution type program Execution of this program type is triggered by a user-specified event. ( Page 25 T rigger type ) *1 Measurement of elapsed time is 10 ms or mo re because it is determined depending on the scan time.
26 1 PROGRAM EXECUTION 1.4 Execution Type of Program ■ Bit dat a ON (TRUE) When it is the turn of the co rresponding pr ogram to be executed, the pr ogram is executed if the spec ified bit data is ON. T his eliminates the need for creating a program for monitoring triggers in a separate program.
1 PROGRAM EXECUTION 1.4 Execution Type of Program 27 1 T rigger setting Use the event execution type detail setting. Navigation w indow [Paramet er] [FX5UCPU] [CPU P arameter] "Pr.
28 1 PROGRAM EXECUTION 1.4 Execution Type of Program S t and-by type program This program is executed only when there is an execution request. Saving programs in library Subroutine programs or i nterrupt programs are saved as sta ndby type programs so that they can be used when contro lled separately from the main routine program.
1 PROGRAM EXECUTION 1.5 Program Type 29 1 1.5 Program T ype Programs that use pointers (P) or inte rrupt pointers (I) are explained below . Subroutine program This is the program from pointer (P) up to the RET instructi on. Subroutine prog rams are exec uted only when th ey are called by the CALL instruction.
30 1 PROGRAM EXECUTION 1.5 Program Type Interrupt program This is the program from interrupt pointer (I) up to the IRET instruction. When an interrupt is generated, the interrup t program corresp ond ing to that interrupt pointer number is executed.
1 PROGRAM EXECUTION 1.5 Program Type 31 1 Operation when an interrupt is generated Operation when an interrupt is generate d is explained below . ■ If an interrupt cause oc curs when interrupt is di.
32 1 PROGRAM EXECUTION 1.5 Program Type ■ If an interrupt cause with the same or a lower priority occurs while the interrupt p rogram is being executed • For I0 to I23 and I50 to I177 The occurred interrupt ca use is memorized, and the interrupt program correspond ing to the factor will be executed after the running interrupt program finishes.
1 PROGRAM EXECUTION 1.5 Program Type 33 1 ■ If the same interrupt cause oc curs while the interrupt program is being executed • For I0 to I23 and I50 to I177 The interrupt cause that occured is memori zed, and the interrupt program corresponding to the cause will be executed after the running interrupt program finishes.
34 1 PROGRAM EXECUTION 1.5 Program Type Processing at st artup of interrupt program Processing is as follows when an interrupt program is started up. • Purge/restore of index registers (Z, LZ) ■ P.
2 PROCESSING OF OPERA TIONS ACCORD ING TO CPU MODULE OPERA TION ST A TUS 35 2 2 PROCESSING OF OPERA TIONS ACCORDING T O CPU MODULE OPERA TION ST A TUS The CPU module has three opera tion statuses as follows: • RUN status • ST OP status • Paused Processing of operations on the CPU modu le in each status is explained below .
36 2 PROCESSING OF OPERA TIONS ACCORDING TO CPU MODULE OPERA TION ST A TUS Processing of operations by the CP U module during switch operations Processing of operations by t he CPU module is as follows according to the RUN or STOP mode. The CPU module performs the following processing regardless of RUN or STOP status or p aused status.
3 CPU MODULE MEMORY CONFIGURA TION 3.1 Memory Configuration 37 3 3 CPU MODULE MEMOR Y CONFIGURA TION 3.1 Memory Configuration CPU module memory is explained below . Memory configuration The configuration of CPU modul e memory is explaine d below . Dat a memory The following files a re stored in data memo ry .
38 3 CPU MODULE MEMORY CONFIGURA TION 3.1 Memory Configuration SD memory card The following files are stored in SD memory card. Category File type Max.
3 CPU MODULE MEMORY CONFIGURA TION 3.2 F iles 39 3 3.2 Files The CPU module files are explaine d below . File type and storage destination memory File types and their storage destination memory are explained below . : Can be stored, : Cannot be stored *1 For serial communications file.
40 3 CPU MODULE MEMORY CONFIGURA TION 3.2 Files MEMO.
41 PA R T 2 P ART 2 FUNCTIONS This part consists of the following chapters. 4 FUNCTION LIST 5 SCAN MONITORING FUNCTION 6 CLOCK FUNCTION 7 ONLINE CHANGE 8 INTERRUPT FUNCTION 9 PID CONTROL FUNCTION 10 C.
42 4 FUNCTION LIST 4 FUNCTION LIST The following table lists the functions of the CPU module. Function Description Reference Scan monitoring f unction (W atchdog timer setting) Detects an erro r in the hardware and program of the CPU module by monitoring the scan time.
4 FUNCTION LIST 43 4 MODBUS RTU communication function Connection wit h the prod ucts which support MODBUS RTU is available. The master and slave functi ons can be used.
44 5 SCAN MONITORING FUNCTION 5.1 Scan time monitoring time setting 5 SCAN MONIT ORING FUNCTION This function detects CPU modul e hardware or program errors by monitoring t he scan time. Using the wa tchdog timer , which is an internal timer in the CPU mo dule, the follow ing scans are monitored.
5 SCAN MO NITORING FUNCTION 5.3 Precautions 45 5 Scan time when the WDT instruction is used Even though the watchdog timer is reset usin g the WDT instruction, th e scan time val ue is not reset. The scan timer value is the value measured up to the END instruction.
46 6 CLOCK FUNCTION 6.1 Time Setting 6 CLOCK FUNCTION The CPU module has an internal clock and is used to manage time in functions performed by the system such as dates of the error history .
6 CLOCK FUNCTION 6.1 Time Setting 47 6 Reading clock dat a There are the following methods to read clock data. • Using SM/SD • Using instructions Using SM/SD Clock data is read to SD210 to SD216 when SM213 (clock data read request) is turned ON. Using instructions Clock data is read from the CPU mo dule using the TR D(P) instruction.
48 6 CLOCK FUNCTION 6.2 Setting Time Zone 6.2 Setting T ime Zone The time zone used for the CPU module can be specified . S pecif ying the time zone enables the clock of the CPU mo dule to work in the local time zone.
6 CLOCK FUNCTION 6.3 System clock 49 6 6.3 System clock There are two types of system clocks, one is to execute ON/OFF by the system and the other is to execute ON/OFF in the intervals specified by the user . S pecial relay used for system clock S pecial relays used for system clock are as follows.
50 7 ONLINE CHANGE 7.1 Online Ladder Block Change 7 ONLINE CHANGE This chapter describes online chan ge. 7.1 Online Ladder Block Change Writes the portion edited on the ladd er edit wi ndow of the engineering tool to the CPU m odu le in increments of ladders.
7 ONLINE CHANGE 7.1 Online Ladder Block Change 51 7 Instructions not comp atible with online ladder block change Do not execute online chang e to ladder block including the follo wing instruction.
52 7 ONLINE CHANGE 7.1 Online Ladder Block Change ■ Falling instruction When a falling instruction exists within t he range to be changed, the falling instruction will no t be executed even if the execution condition (ON to OF F) is fulfille d at completion of online program change.
8 INTERRUPT FUNCTION 8.1 Multiple Interrupt Function 53 8 8 INTERRUPT FUNCTION This chapter describes the interrupt fu nction. 8.1 Multiple Interrupt Function When an inte rrupt occurs while an interr.
54 8 INTERRUPT FUNCTION 8.1 Multiple Interrupt Function Interrupt priority setting The interrupt priority (1 to 3) of interruptions from modules can be changed .
9 PID CONTROL FUNCTION 9.1 Outline of Function 55 9 9 PID CONTROL FUNCTION 9.1 Outline of Function PID control is performed by PID control inst ruction. The PID inst ruction requires the system to calculate the output (MV) value from the measured (PV) value.
56 9 PID CONTROL FUNCTION 9.3 How to Use PID Instruction Expression for calculating the measured value (aft er the filter) in sam pling at this time (PVnf) The value "PVnf" is obtained from the following expression based on the read measured value.
9 PID CONTROL FUNCTION 9.4 Relationship Between Parameter Setting and Auto-Tuning 57 9 ■ Set item ■ Precautions for using the PID instruction For the precautions for using the PID inst ruction, refer to the followi ng manual. MELSEC iQ-F FX5 Programming Manual (Instruc tions, S tandard Func tions/Function Blocks) 9.
58 9 PID CONTROL FUNCTION 9.5 Parameter 9.5 Parameter *1 ( s3)+20 to +24 become used only if b1, b2, or b5 are se t to "1" to determin e the action (ACT) (s3) of +1. Set item Description/Setting range Remarks (s3) Sampling time (TS) 1 to 32767 (ms) It cannot be shorter than operat ion cycle of the PLC.
9 PID CONTROL FUNCTION 9.6 Details of Parameters 59 9 9.6 Det ails of Parameters This chapter describes the details of parameters. Sampling time (s3) Set the cycle time (ms) for the PID operation.
60 9 PID CONTROL FUNCTION 9.6 Details of Parameters • Relationship between the forward/backward operation an d th e output (MV), measured value (PV) and target value (SV) The relationshi p is as follows.
9 PID CONTROL FUNCTION 9.6 Details of Parameters 61 9 Upper and lower limi t s for output value When the upper and lower limi t settings of the output value are valid, the outp ut value is as shown in the chart. The upper lim it and lower limit of the output va lue can moderate th e increase of the integral ite m in the PID control.
62 9 PID CONTROL FUNCTION 9.6 Details of Parameters Proportional gain (s3)+3 During the proportiona l operation, the output (MV) increases in prop ortion to the deviation (difference between the target value (SV) and the measured value (PV)).
9 PID CONTROL FUNCTION 9.6 Details of Parameters 63 9 Integral time (s3)+4 During the integral op eration, the time after devia tion is genera ted until the integral operation output become s the proportion al operation output. This is called integr al time and is expressed as "TI".
64 9 PID CONTROL FUNCTION 9.6 Details of Parameters The integral operation changes the ou tput so that the continuously gene rated devia tion is eliminated. As a result, the remaining deviation gene rated in th e proportional op eration can be elimin ated.
9 PID CONTROL FUNCTION 9.6 Details of Parameters 65 9 Differential time (s3)+6 Use the differential time (TD) to respond sensitively to fluctuat ions in th e measured value (PV) caused by disturbance, etc.
66 9 PID CONTROL FUNCTION 9.6 Details of Parameters Ex. PID operation in forward operation (cooling) Output value (MV) T emperature T arget value (SV) Ti m e Ti m e TD3>TD2>TD1 TD3>TD2>TD1.
9 PID CONTROL FUNCTION 9.6 Details of Parameters 67 9 Alarm output (s3)+24 If the input variation and the ou tput variation specified with (s3) +20 to (s3) +23 are exceeded, each bit of (s3) +24 turns ON as a warning output.
68 9 PID CONTROL FUNCTION 9.7 Auto-Tuning 9.7 Auto-T uning This chapter describes the auto-t uning fun ction of PID instruction. The auto-tuning function will automatically set the important constants, such as the proportional gain and the integral time , t o ensure optimum PID control.
9 PID CONTROL FUNCTION 9.7 Auto-Tuning 69 9 ■ Operation characteristics (in an exa mple of backward operation) During the " W" period after the tuning cycl e is finished, the output value is held at th e output Lowe r Limit V alue (L L V), and then normal PID control is started.
70 9 PID CONTROL FUNCTION 9.7 Auto-Tuning Parameters set in limit cycle method The parameters specified in the limit cycle method are shown below . Auto-tuning procedure 1. Set forward or backward ope ration Set the operation direction flag (b0) in the operatio n setting parameter (ACT) (s3)+1.
9 PID CONTROL FUNCTION 9.7 Auto-Tuning 71 9 S tep Response Method For acquiring satisfactory control results during PID control, it is necessary to obtain the optimal value of each constant (parameter) suitable for the control target.
72 9 PID CONTROL FUNCTION 9.7 Auto-Tuning Auto-tuning procedure 1. T ransferring the output value for auto-tuning to the outpu t value (d) Set the output value for auto-tuning to the maximum available out put value multiplie d by 0.5 to 1 fo r the output equip ment.
9 PID CONTROL FUNCTION 9.8 Examples of Program 73 9 9.8 Examples of Program System configuration example An example of the system con figuration when t he PID control function is used is shown below .
74 9 PID CONTROL FUNCTION 9.8 Examples of Program Program example 1 This is an example of the sa mple program for PID control. Use device The content of the devices used for the program is as follows. : This is an item not occupied. *1 T he setting is always necessary .
9 PID CONTROL FUNCTION 9.8 Examples of Program 75 9 Program OUTHS ST0 K2000 MOV SM402 Initial pulse SM402 Initial pulse SM402 Initial pulse X011 PID control is started M3 PID operation is executed ST0.
76 9 PID CONTROL FUNCTION 9.8 Examples of Program Program example 2 This is an example of the sample program for auto tuning (limit cycl e method). Use device The content of the devices used for the program is as follows. : This is an item not occupied.
9 PID CONTROL FUNCTION 9.8 Examples of Program 77 9 Program OUTHS ST0 K2000 MOV X010 Auto-tu ni ng i s started SM402 Initial pulse D511.4 Auto-tun ing is executed Auto-tun ing is executed Auto-tun ing is executed Auto-tun ing is executed X010 Auto-tu ni ng i s started M4 ST0 Heater operation cycle M4 M4 Auto-tun ing is executed ST0<D502 D511.
78 9 PID CONTROL FUNCTION 9.8 Examples of Program Program example 3 This is an example of the sample program for auto tuning (ste p response method). Use device The content of the devices used for the program is as follows. : This is an item not occupied.
9 PID CONTROL FUNCTION 9.8 Examples of Program 79 9 Program OUTHS ST0 K2000 MOV X010 Auto-tu ni ng i s started SM402 Initial pulse D511.4 Auto-tun ing is executed Auto-tun ing is executed Auto-tun ing is executed Auto-tun ing is executed X010 Auto-tu ni ng i s started M4 ST0 Heater operation cycle M4 M4 Auto-tun ing is executed ST0<D502 D511.
80 9 PID CONTROL FUNCTION 9.8 Examples of Program Program example 4 This is an example of the sample program for auto tuning (limit cycl e method) + PID control. Use device The content of the devices used for the program is as follows. : This is an item not occupied.
9 PID CONTROL FUNCTION 9.8 Examples of Program 81 9 Program OUTHS ST0 K2000 MOV SM402 Initial pulse SM402 Initial pulse Initial pulse SM402 PID c ont r ol is s t ar t ed afte r aut o-tu ni ng PID is e.
82 9 PID CONTROL FUNCTION 9.8 Examples of Program Program example 5 This is an example of the sample program for au to tuning (step respon se method) + PID control. Use device The content of the devices used for the program is as follows. : This is an item not occupied.
9 PID CONTROL FUNCTION 9.8 Examples of Program 83 9 Program OUTHS ST0 K2000 MOV SM402 Initial pulse SM402 Initial pulse Initial pulse SM402 PID c ont r ol is s t ar t ed afte r aut o-tu ni ng PID is e.
84 10 CONST A NT SCAN 10.1 Constant scan settings 10 CONST ANT SCAN Since the processing time differs as per the execution/n on-execution of command used in the program, the scan timer changes with every scan.
10 CONST ANT SCAN 10.1 Constant scan settings 85 10 Conditions of setting time Set a value that meets the following relational equ ation for the setting time of the constant scan.
86 1 1 REMOT E OPERA TION 11.1 Remote RUN/STOP 11 REMOTE OPERA TION A remote operation is an o peration to externally change th e operation status of the CP U module with the RUN/STOP/RESET switch of the CPU module set to the RUN position. The following items show the types of remote operation.
1 1 REMOTE OPERA TION 11.1 Remote RUN/STOP 87 11 • When set to STOP at contact ON When contact is set to OFF , the CPU module is in the RUN status. When contact is set to ON, the CPU module is in the ST OP status. Engineering tool method Refer to the fol lowing.
88 1 1 REMOT E OPERA TION 11.2 Remote PAUSE 11 . 2 Remote P AUSE With the RUN/STOP/RESET switch set to the RUN position of the CPU module, the operation status is changed to P AUSE status from outside. The P AUSE status is a status in which operation of the CPU module is stopped by holdi ng the ON/OFF status of all output (Y).
1 1 REMOTE OPERA TION 11.3 Remote RESET 89 11 Precautions ■ When keeping in forced ON o r OFF status in advance When keeping in forced ON or OFF status in advance, interlock using the P AUSE contact (SM204). 11 . 3 Remote RESET This is an operation to reset the CPU module by an external operation when the CPU modul e is in the STOP status.
90 1 1 REMOT E OPERA TION 11.3 Remote RESET Method of execution of remote RESET The following are the methods of executio n of remote RESET . Engineering tool method Refer to the fol lowing. GX Works3 Operating Manual Method using external devices that use SLMP Refer to the fol lowing.
1 1 REMOTE OPERA TION 11.4 Relationship Between Remote Operation and CPU Module 91 11 11 . 4 Relationship Between Remote Operation and CPU Module Relationship between remote operation a nd RUN/ST OP s.
92 12 DEVICE/LABEL MEMOR Y AREA SETTING 12.1 Default Capacity of Each Area 12 DEVICE/LABEL MEMOR Y AREA SETTING The capacity of each area in device/label memory can be specified. 12.1 Default Cap acity of Each Area The default capacity of each area is as follows.
12 DEVICE/LABEL MEMORY AREA SETTING 12.2 The Setting Range of the Capacity of Each Area 93 12 12.2 The Setting Range of the Cap acity of Each Area The setting range of the capacity of each area on the device/label memory is as follows.
94 12 DEVICE/LABEL MEMOR Y AREA SETTING 12.3 Device/Label Memory Area Setting 12.3 Device/Label Memory Area Setting The capacity of each data area allocated within the device/labe l memory can be changed.
12 DEVICE/LABEL MEMORY AREA SETTING 12.4 Device Setting 95 12 12.4 Device Setting The number of points of each user device can be changed. Navigation w indow [Paramet er] [FX5UCPU] [CPU P .
96 12 DEVICE/LABEL MEMOR Y AREA SETTING 12.4 Device Setting Range of use of device point s The following table lists the range of use of dev ice points to be set in the devi ce setting.
13 INITIAL DEVICE V ALU E SETTING 13.1 Setting Initial Device Values 97 13 13 INITIAL DEVICE V ALUE SETTING Directly sets the initial val ue of a device used by the program (i.e., not via the program). 13.1 Setting Initial Device V alues This section describes the settings re quired to use initial device values.
98 13 INITIAL DEVICE V ALU E SETTING 13.2 Applicable Device s Initial value setting Configure the initial value se tting. Navigation w indow [Paramet er] [FX5UCPU] [CPU P arameter] &qu.
14 LA TCH FUNCTIO N 14.1 Types of Latch 99 14 14 LA TCH FUNCTION The contents of each device/label of the CPU module is cl eared in the cases described below and change d to its default value.
100 14 LA TCH F UNCTION 14.3 Latch Settings 14.3 Latch Settings Latch settings This subsection describes the latch setting. Setting latch on devices A range of multiple latches can be set for 1 type of device. T wo latch ranges, latch (1) and latch (2), can be set.
14 LA TCH FUNCTIO N 14.4 Clearing of Data of the Latch Range 101 14 Setting latch on labels This subsection describes latch setting on labels. Operating procedure 14.4 Clearing of Dat a of the Latch Range The data of the latch range can be cleared by the following ways.
102 14 LA TCH F UNCTION 14.5 Precautions 14.5 Precautions The precaution to be taken when using a latch function is describ ed below . • When latch range and device no. of points are changed in the parameter , the latching for devices other than link register (W) and latch label will be the same as the latch settings before the change.
15 MEMORY CARD FUNCTION 15.1 SD Memory Card Forced Stop 103 15 15 MEMOR Y CARD FUNCTION The following explai ns the functions that use SD memory card. 15.1 SD Memory Card Forced S top SD memory card can be disabled without turning power ON OFF , even when a function that uses SD memory card is being executed.
104 15 MEMORY CARD FUNCTION 15.2 Boot Operation Releasing the SD memory card forced stop st atus After the SD memory card h as turned to disable status, rel ease the SD memory card forced stop status by the operation shown below . 1. Load SD card again.
15 MEMORY CARD FUNCTION 15.2 Boot Operation 105 15 Configuring th e boot setting Carry out the settings requi red fo r the boot operation. Navigation w indow [Paramet er] [FX5UCPU] [Memory Card Parameter] [Boot Setting] Operating procedure Displayed items "Boot Setting" window 1.
106 15 MEMORY CARD FUNCTION 15.2 Boot Operation Maximum number of boot fil es that can be specified It is the same as the number of files that can be stored in transfer destination memory . Operation when security functions are enabled This section describes the operation when security functions are enabled.
16 DEVICE/LABEL ACCESS SERVICE PROCESSING SETTING 107 16 16 DEVICE/LABEL ACCESS SER VICE PROCESSING SETTING This is a function to optionally desig nate t he frequency of execution of the service process that is carried out by the END process in the p arameter .
108 16 DEVICE/LABEL ACCESS SER VICE PROCESSING SETTING *1 Show s the maximum a scan time is extended by the service process. *2 Shows the extent of fluctuation of scan time or the degree of scattering by the service process. *3 Shows the time between receiving a service process reques t from the peripheral equipment to returning a response.
17 RAS FUNCTIONS 17.1 Self-Diagnostics Function 109 17 17 RAS FUNCTIONS 17.1 Self-Diagnostics Function Checks if a problem exis ts with the CPU m odule. Self-diagnostics timing If an error occurs when the CPU module is powered on or wh ile it is in the RUN/STOP stat e, the CPU module detects, and displays it, and stops operation.
110 17 RAS FUNCTIONS 17.1 Self-Diagnostics Funct ion CPU Module Operation Upon Error Detection Setting Configure each CPU Mo dule Operation settin g when an error i s detected.
17 RAS FUNCTIONS 17.1 Self-Diagnostics Function 111 17 CPU Module Operation Setting S pecify the operati on which the CPU module should perform when an error occurs on each intelligent function module.
112 17 RAS FUNCTIONS 17.1 Self-Diagnostics Funct ion Error Clear This function clears all the exis ting continuation errors at once. Errors that can be cleared How to clear errors Errors can be cleared in two ways: ■ Using the engineering tool Clear errors with the module diagnosti cs function of eng ineering tool.
18 SECURITY FUNCTIONS 113 18 18 SECURITY FUNCTIONS These functions prevent theft, tampering, wrongful operation , illegal execution, et c. of a cu stomer's assets saved on a personal computer or in module s in the FX5 system as a resu lt of illegal access by a third party .
114 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction 19 BUIL T -IN I/O FUNCTION The built-in input/output (I/O) function of the CPU module is expla ined below . Each respective function is set by parameters in GX Works3. 19.1 High-speed Counter Function High-speed counter function is explained below .
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 115 19 Other high-speed c ounter instructions In addition to the dedicate d instructions, there are instructi ons such as DHSCS, DHSCR , and DHSZ (hereafter referred to as "high-speed comparison instruction") for high-speed counters.
116 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction ■ 1 phase, 2 input counter Counting method of 1 phase, 2 input counter is as follows. ■ 2 phase, 2 input counter [1 edge count] Counting method of 2 phase, 2 input c ounter [1 edge count] is as follows.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 117 19 ■ 2 phase, 2 input counter [4 edge count] Counting method of 2 phase, 2 input c ounter [4 edge count] is as follows. ■ Internal clock Counting method of internal clock is as follows.
118 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction Precautions • The input circuit of the CPU module has restrictions for maximum frequency • If input response time is set, maximum frequency is affected by the setting value. • Under ordinary circumstances, the internal cl ock counts at 1 MHz (fixed) during operation.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 119 19 Assignment for high-speed counters Input assignment for high-speed counters Assignment for input devices of high-speed counters is set by parameters. Assignment is determined accord ing to functions set for each channels by parameter .
120 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction Input assignment-wise / maximum frequency fo r high-speed counters Input assignment-wise maximum frequency fo r high -speed counters is as follows. ■ FX5U-32M , FX5UC-32M • X6 to X17 are input frequencies up to 10 KHz, regardless of maximum frequency value.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 121 19 A: A phase input, B: B phase input, P: Exte rnal preset input, E: Extern al enable in put ■ FX5U-64M , FX5U-80M • X10 to X17 are input frequencies up to 10 KHz, regardless of maximu m frequency value.
122 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction A: A phase input, B: B phase input, P: Exte rnal preset input, E: Extern al enable in put CH3 1 -phase 1-count (S/W) A P E 200 KHz 1-pha.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 123 19 High-speed counter p a rameters High-speed counter parameters are explain ed below .
124 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction High-speed counter (normal mode) Normal mode for high-speed coun ters is explained below . Use normal mode if you want to use as an ordinary hi gh-speed counter . Set operation mode to normal mode by high-spe ed counter parameter setting.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 125 19 Parameters are enabled when the CPU module is powered ON or after a reset. In addition, operations different from the p arameter settings are possible by tra n sferring val ues to special relays and special regi sters while changing these values in the progra m.
126 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction High-speed counter (pulse density measurement mode) The pulse density measurement mode for high-spee d counters is explained below .
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 127 19 Parameters are enabled when the CPU module is powered ON or after a reset. In addition, operations different from the p arameter settings are possible by tra n sferring val ues to special relays and special regi sters while changing these values in the progra m.
128 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction Precautions ■ Count direction switch during measuremen t The pulse density measurement mode calcula tes pulse density based on difference in measurin g unit time of the current value of high-sp eed counters.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 129 19 High-speed counter (rot ational speed measurement mode) The rotational speed measurement mode for high-speed cou nters is explained below .
130 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction Parameters are enabled when the CPU module is powered ON or after a reset. In addition, operations different from the p arameter settings are possible by tra n sferring val ues to special relays and special regi sters while changing these values in the progra m.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 131 19 Precautions ■ Count direction switch during measuremen t The rotational speed measurement mode calculates ro tational speed based on current value difference of high-speed counters in the measuring u nit time.
132 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction High-speed comp arison ta ble The high-speed comparison table is explained below . Used to set high-speed comparison table for high-speed counters. Sets match output setting for high-speed counters.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 133 19 ■ Reset When comparison value 1 matches the current value of the set high-speed counter , the bit device specified as the output destination device is reset. Operation is the same as for the DH SCR instru ction.
134 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction ■ Other precautions There are common precautions when using high-speed cou nters. For details, refer to Page 163 Precautions when using high-speed counters.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 135 19 Multiple point output, high-speed comp arison t able operation Operation of each type high-speed comparison table is explained below . ■ Bit output When comparison value 1 matches the current value of the set high-speed counter , output data is transferred to the output devices.
136 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction Comp arison st art/stop for multiple poi nt output, high-speed comparison t able Multiple point output, high-spee d comp arison tables cannot execute comparison by setting the parameter alone.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 137 19 S pecial relay list A list of special relays used for high-speed counters is provided below . Special relays for individual channels A list of special relays by high-speed counter channel is provided below .
138 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction SM4564 High-speed counter count direction monitor (CH1) (1-phase 2-input, 2- phase 2-input) Down-counting Up-cou nting OFF R SM4565 High.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 139 19 Special relays shared by all channels A list of special relays for high-speed counter shared by all channels is provided below .
140 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction S pecial relay det ails Details concerning special relays used for high-speed counters are explained below . High-speed counter operating Device for monitori ng operation status of each channel of the hig h-speed counter .
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 141 19 High-speed counter overflow Flag that detects counter value overflow o f high-speed counter . ■ Corresponding devices The device numbers corresponding to each ch annel are as follows.
142 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction High-speed counter (1-phase 2-input, 2- phase 2-input) cou nt direction monitor Device for monitori ng counter direction when using 1-phase 2-input, 2-phase 2-input counter . ■ Corresponding devices The device numbers corresponding to each ch annel are as follows.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 143 19 High-speed counter preset input logic These devices are used for setting the preset input logic. ■ Corresponding devices The device numbers corresponding to each ch annel are as follows.
144 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction ■ Up date timing The timing of device update is as follows. • Cannot be modified while th e high-speed counter is o perating. Operates in the configured status when the high-speed counter starts.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 145 19 ■ Operation Description The content of the operation when ON and when OFF is as follows. These devices do not operate when the FX3 co mpatible high-speed counte r function is valid. ■ Up date timing The timing of device update is as follows.
146 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction High-speed comparison t able (high-speed comp are instruction) error occurrence This device turns ON when driving the DHSCS, DHSCR, DHSZ inst ructions in excess of the limi tation of the number of instructions driven at the same time.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 147 19 ■ Up date timing The timing of device update is as follows. Multi-point output high-speed comparison t ab le completion This device turns ON when the high-speed counter's multi- point output high-spee d comparison tables have finished comparing all of the set tables.
148 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction S pecial registers list The following list sho ws the special registers u sed with high-sp eed counters.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 149 19 SD4548 High-speed counter number of pulses per rotatio n (CH2) 1 to 2147 483647 Parameter set value R/W SD4549 SD4550 to SD4559 Not u.
150 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction SD4622 High-speed counter maximum value ( CH5) -2147483648 to +2147483647 -2147483648 R/W SD4623 SD4624 High-speed counter minimum value.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 151 19 Special registers shared by all channels The following list shows the speci al register s shared b y all high-speed counter channels.
152 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction S pecial register det ails This section describes details about the spec ial registers used with the high-speed counters. High-speed counter current value These devices store the current va lues of the high-speed counters.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 153 19 ■ Up date timing When the current value of a high-speed counter exceed s the ma ximum value, the value is updated in END processin g. When the value is read using the HCMOV instruct ion, it is fi rst updated to the latest value and then read.
154 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction • Power ON, Reset, STOP/P AUSE RUN High-speed counter rotational speed These devices store the measurement resu lts of rotational speed measurement mode. ■ Corresponding devices The device numbers corresponding to each ch annel are as follows.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 155 19 ■ Description of operation This section describes the operations when the preset input logic and the preset con trol switch are co mbined.
156 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction • Operation when preset input logic: positive logic, preset control switch: constant when ON The preset is constantly execut ed while the preset input is ON.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 157 19 • Operation when preset input logic: negative logic, p reset control switch: rising edge + fall ing edge The preset is executed when the preset input changes ON OFF and when it changes OFF ON.
158 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction High-speed counter ring length These devices set the ring length of the high-speed counters. ■ Corresponding devices The device numbers corresponding to each ch annel are as follows. ■ Description These devices set the ring length of the high-speed counters.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 159 19 High-speed counter number of pulses per rotation These devices set the number of pulses per rotation fo r rotational speed measurement mode. ■ Corresponding devices The device numbers corresponding to each ch annel are as follows.
160 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction Multi-point output high-speed co mparison t able comparison number This device stores the number of the tabl e currently being compared in the multi-point output high-spe ed comparison tables.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 161 19 S pecial relays/special registers capable of high-speed transfers with the HCMOV instruction The table below shows the devices that can read and write the latest value with the HCMOV in struction from special relays and special registers re lated to the high -speed counters.
162 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction Special registers fo r individual channels This section only lists the devices for high-speed counte r CH1. The devices for high-spe ed counter CH2 and subsequent counters have the same operation as CH1.
19 BUIL T -IN I/O FUNCTION 19.1 High-speed Counter Function 163 19 Precautions when using high-speed counters This section describes the precaut io ns when using high-speed counters.
164 19 BUIL T-IN I/O FUNCTION 19.1 High-speed Counter Fun ction ■ High-speed counter current value modificatio n operation by instructions The table below shows the operations when the current valu e of a high-speed counter is rewritten by instructio ns.
19 BUIL T -IN I/O FUNCTION 19.2 FX3-compatible high-speed counter fu nction 165 19 19.2 FX3-comp atible high-speed counter function FX3-compatible high-speed counter function is expla ined below .
166 19 BUIL T-IN I/O FUNCTION 19.2 FX3-compatible high-speed counter fu nction The element s of the composition of the LC device Each element that compo ses the LC device is shown below . The comp arison between the UDCNTF instruction and HIOEN instruction The comparison between the UDCNTF instruction and the HIOEN instruction is d escribed below .
19 BUIL T -IN I/O FUNCTION 19.2 FX3-compatible high-speed counter fu nction 167 19 • If the UDCNTF instructions and HIOEN instructions are us ed for the same CH, it is not possible to use the HIOEN instruction to stop the high-speed counter star ted by UDCNTF instructions.
168 19 BUIL T-IN I/O FUNCTION 19.2 FX3-compatible high-speed counter fu nction : Change is possible : Change is impossible The assignment of th e high-speed counter and the m aximum frequ ency.
19 BUIL T -IN I/O FUNCTION 19.2 FX3-compatible high-speed counter fu nction 169 19 FX3-comp atible high-speed counter setting This section describes the setting of the case when the FX3 compatible high-speed counter is used. FX3-compatible high-speed counter are set by GX Works3.
170 19 BUIL T-IN I/O FUNCTION 19.2 FX3-compatible high-speed counter fu nction Window Displayed items Item Description Setting range Default Use/Not Use Set whether us e counter or not. • Disable • Enable Counter device Select the high speed counter of input assignment which is compatible with FX3.
19 BUIL T -IN I/O FUNCTION 19.2 FX3-compatible high-speed counter fu nction 171 19 Parameters are enabled when the CPU module is powered ON or after a reset. S pecial relay list A list of special relays used for high-speed counters is provided below .
172 19 BUIL T-IN I/O FUNCTION 19.2 FX3-compatible high-speed counter fu nction LC count direction monitor This is the device to monitor the directions of the counters from LC35 to LC55 wh en the FX3 co mpatible high-speed counter is used. ■ Operation Description The content of the operation when ON and when OFF is as follows.
19 BUIL T -IN I/O FUNCTION 19.2 FX3-compatible high-speed counter fu nction 173 19 LC device : High-speed transfer capable (special relay is immediately updated) : Normal transfer capable (spe.
174 19 BUIL T-IN I/O FUNCTION 19.3 Pulse Width Measurement Function 19.3 Pulse Wid th Measurement Function This section describes the pu lse width measurement function.
19 BUIL T -IN I/O FUNCTION 19.3 Pulse Width Measurement Function 175 19 Switching positive lo gic/negative logic The pulse input logic can be switched .
176 19 BUIL T-IN I/O FUNCTION 19.3 Pulse Width Measurement Function Pulse wid t h measurement p a rameters This section explains the parame ters for pulse width measurement.
19 BUIL T -IN I/O FUNCTION 19.3 Pulse Width Measurement Function 177 19 List of special relays/special registers The list of special relays/special registers used in pulse wi dth measurement is shown below . R/W: Read or write (Note, however , that only writing is allowed for the HCMOV instruction .
178 19 BUIL T-IN I/O FUNCTION 19.3 Pulse Width Measurement Function Det ails of special relays/special registers Details of special relays/special registers used in pulse width measurement are explained belo w .
19 BUIL T -IN I/O FUNCTION 19.3 Pulse Width Measurement Function 179 19 Falling edge flag This flag turns ON a t the end of the 1st pu lse width measur emen t. During measurement in th e alwa ys measurement mode, it stays ON. ■ Corresponding devices The device numbers corresponding to each ch annel are as follows.
180 19 BUIL T-IN I/O FUNCTION 19.3 Pulse Width Measurement Function Rising edge ring counter value The ring counter value when the rising edge is detected is sto red. Ring counter values can be changed only by the HCMOV instruction. ■ Corresponding devices The device numbers corresponding to each ch annel are as follows.
19 BUIL T -IN I/O FUNCTION 19.3 Pulse Width Measurement Function 181 19 Pulse wid th maximum value The maximum value of the pulse width is stored. • When logic switching is set to positive logic, the difference from the rising edge up to the fa lling edge.
182 19 BUIL T-IN I/O FUNCTION 19.3 Pulse Width Measurement Function Period maximum value The maximum value of the period is stored. • When logic switching is set to positive logic, the difference from rising edge to rising edge. • When logic switchin g is set to negative logic, the difference from falling edge to falling edge .
19 BUIL T -IN I/O FUNCTION 19.3 Pulse Width Measurement Function 183 19 Examples of program An example of a program using the pulse wid th measurement function is explained below . Outline of operation A program for measuring the delay time betwe en the rising edges of input signal s X1 and X2 o n the CPU module is explained below .
184 19 BUIL T-IN I/O FUNCTION 19.4 Pulse Catch Function 19.4 Pulse Catch Function This section explains t he pulse catch function. Outline of pulse catch function The CPU module has a built-in pulse catch function whi ch enable s pulse signal s that are incompletely sampled in regular input processing to be caught.
19 BUIL T -IN I/O FUNCTION 19.4 Pulse Catch Function 185 19 Pulse catch p arameters This section explains the pulse catch parameters. Set the pulse catch paramet ers in GX Works3. Outline of p arameters Pulse catch parameters are pulse ca tch settin g and input response time.
186 19 BUIL T-IN I/O FUNCTION 19.4 Pulse Catch Function Operation of pulse catch function Operation of the pu lse catch function is explained be low . Basic operation of pulse catch function The corresponding input device is turned ON for the duration of the scan following the scan whe re the pulse signal is detected.
19 BUIL T -IN I/O FUNCTION 19.4 Pulse Catch Function 187 19 ■ Operation when the same pulse is de tected for two scans or more The input device is turned ON for the detected number of scans .
188 19 BUIL T-IN I/O FUNCTION 19.5 FX3-Compatible Pulse Catch Function 19.5 FX3-Comp atible Pulse Catch Function This section explains the FX3- compatible pulse catch function.
19 BUIL T -IN I/O FUNCTION 19.5 FX3-Compatible Pulse Catch Function 189 19 FX3-comp atible pulse catch function execution procedure The procedure for executing the FX3-compatib le pulse catch function is explained below. 1. Check the FX3-compatible pu lse catch specificatio ns.
190 19 BUIL T-IN I/O FUNCTION 19.5 FX3-Compatible Pulse Catch Function Displayed items Parameters are enabled when the CPU module is powered ON or after a reset. Operation of FX3-comp at ible pulse catch function Operation of the FX3-comp atible pulse catch function is explained below .
19 BUIL T -IN I/O FUNCTION 19.6 General-purpose Input Functions 191 19 19.6 General-purpose Input Functions The FX5 PLC general-purpose inpu ts are explained below . Outline of general-purpose input functions For general-purpose inputs of the FX5 PLC, the input response time can be set by parameters.
192 19 BUIL T-IN I/O FUNCTION 19.6 General-purpose In put Functions General-purpose input function p arameters This section explains the ge neral-purpose input parameters. Set the input response ti me parameters in GX Works3. Parameter s etting This section explains how to set the input response time parameters.
19 BUIL T -IN I/O FUNCTION 19.7 PWM Function 193 19 19.7 PWM Function This chapter explains the PWM functi on. Outline of PWM output The CPU module has a built-in PWM function, which allo ws PWM output on up to four channels. For PWM output, the output channel assignment, pulse/cycle units, output pulse logic, pulse wi dth, cycle, etc.
194 19 BUIL T-IN I/O FUNCTION 19.7 PWM Function ■ When negative logic is set The relationshi p between the period and pulse wi dth when the output pulse logic at start of pulse output is set to "negative logic" is shown below . (The pulse width is called the "OFF width".
19 BUIL T -IN I/O FUNCTION 19.7 PWM Function 195 19 PWM output p arameters This section explains the PWM output parameters. Set the PWM output pa rameters in GX Works3. Outline of p arameters PWM output parameters are output destination , pulse width /cycle unit, output pulse logic, pulse width, and period.
196 19 BUIL T-IN I/O FUNCTION 19.7 PWM Function List of S pecial relays/special registers The list of special relays/special registers used in PWM output is shown below . R/W: Read or write R: Read only Det ails of special relays/special registers Details of special relays/special regi sters used in PWM output are explained below .
19 BUIL T -IN I/O FUNCTION 19.7 PWM Function 197 19 Number of output pulses The number of output pulses of PWM output is stored. When "0" is set, o utput is continued with out any limitation. ■ Corresponding devices The device numbers corresponding to each ch annel are as follows.
198 19 BUIL T-IN I/O FUNCTION 19.7 PWM Function Period The period of PW M output is stored. ■ Corresponding devices The device numbers corresponding to each ch annel are as follows. ■ Up date timing The timing to reflect the device in operation is as follows.
19 BUIL T -IN I/O FUNCTION 19.7 PWM Function 199 19 Cautions when using the PWM function • Set the pulse width to a value 2 s more and period to a value 5 s more.
200 19 BUIL T-IN I/O FUNCTION 19.7 PWM Function ■ Program • Example of program for PWM output using th e HIOEN instruction • Example of program for PWM output using th e PWM instruction HIOEN K0 K1 K50 Interrupt program is permitted.
20 BUIL T -IN ANALOG FUNCTION 20.1 Function Outline 201 20 20 BUIL T -IN ANALOG FUNCTION The analog I/O terminal functions built into th e FX5U CPU module are explained below. 20.1 Function Outline There are two lines of analog voltage input and one line of ana log voltage output built into the FX5U CPU module.
202 20 BUIL T-IN ANALOG FUNCTION 20.2 Analog Input/Output Specifica tions List of analog input functions List of analog output functions List of Functions Description Function to enable/disable A/ D conv ersion Function to en able or disable A/D conversion per channel.
203 PA R T 3 P ART 3 DEVICES/LABELS This part consists of the following chapters. 21 DEVICES 22 LABELS.
204 21 DEVICE S 21.1 List of Devices 21 DEVICES This chapter explains devices. 21.1 List of Devices A list of devices is provi ded below . S p ecify code of timer/retentive time r/counter/long counter by T/ST/C/L C if type is determine d like instruction when specifying device.
21 DEVICES 21.2 User Devices 205 21 21.2 User Devices This section explains user devices. Input (X) Provides the CPU module with commands and data by external devices such as push buttons , selector sw itches, limit switches, digital switches, etc.
206 21 DEVICE S 21.2 User Devices Internal relay (M) Device intended to be used as an auxiliary relay inside the CPU module. All internal relays are turned OFF by the following operation. • CPU module pow er OFF ON • Reset • Latch clear Latch relay (L) Auxiliary relay that can latch (backup by battery) i n the CPU module.
21 DEVICES 21.2 User Devices 207 21 How to turn annunciator (F) ON Use SET F instruction. The annunciator (F) turns ON onl y during the rise time of input conditio ns (OFF ON); the annunciator (F) remains ON even if the input condition is OFF .
208 21 DEVICE S 21.2 User Devices How to turn annunciator (F) OFF Annunciators (F) are turned OFF by the following instructi on. Y ou can turn OFF by OUT F as well, but "Processing when annunciator (F) is OFF" descri bed below is not carried out even if annuncia tor numbers are turned OF F by OUT F instruction.
21 DEVICES 21.2 User Devices 209 21 T imer (T/ST) Device whereby measurement starts when the timer coil is turn ed ON, time up occurs when current value reaches the setting value, and the contact is turne d ON. The timer is an additi on type counter .
210 21 DEVICE S 21.2 User Devices Current value and measurement range o f timer ■ T imer The current value range is 0 to 32767. Timer processing method The timer's coil is turned ON/OFF , the current value is upda ted and the contact is turned ON/OFF when timer's coil (OUT T instruction) is executed.
21 DEVICES 21.2 User Devices 211 21 Routine timer setting The setting of the routine timer is made. Navigation w indow [Paramet er] [FX5UCPU] [CPU P arameter] "Memory/Device Setti.
212 21 DEVICE S 21.2 User Devices Counter (C/LC) Device that counts number of rises of input conditi ons in t he program. Counters are addition type counters; they count up when the count value matches the setting value, and the contact is turned ON.
21 DEVICES 21.2 User Devices 213 21 Counter reset Current value of counters is not cleared even if its coil input is turned OFF . T o clear (reset) the current value of the counte r and turn the contact OFF , use the RST C instruction/RST LC instruction.
214 21 DEVICE S 21.2 User Devices T o handle th is, arrange so that C0 coil is not turn ed OFF while OUT C0 instructio n execution condition (M0) is ON, by in serting the NC contact execution condition of the OU T C0 instruction in the execution condit ion of the RST C0 instruction as shown by the following circuit example.
21 DEVICES 21.3 System Devices 215 21 Dat a register (D) Device capable of storing numerical data. Link register (W) Device intended to be used as a CPU side device when refreshing word data between CPU module and network module.
216 21 DEVICE S 21.4 Module Access Device 21.4 Module Access Device Device that allows you to d irectly access the buffer memory of intel ligent function modules connected to the CPU module from the CPU module. S pecification method S pecified by U [module number of intellige nt function modules][buffer memory address].
21 DEVICES 21.5 Index Registers (Z/LZ) 217 21 21.5 Index Registers (Z/LZ) Device used for indexing of devices. T ypes of index registers There are 2 types: the index register (Z) and long index register (LZ) Index register (Z) Used for 16-bit index modifica tion.
218 21 DEVICE S 21.6 File Register (R) 21.6 File Register (R) Device capable of storing numerical data. 21.7 Nesting (N) Device for programming operating con ditions by nesting using master control instru ctions (MC/MCR instructio n) *1 . Operation conditions are specified in ascending order (N0 to N14) from outside the nesting.
21 DEVICES 21.8 Pointer (P) 219 21 21.8 Pointer (P) Device used by instructions such as ju mp instruction (CJ instruct ion) and subroutine program call instruction (C ALL instruction, etc.). T ypes of pointers are as follows. Pointers are used fo r the following p urposes.
220 21 DEVICE S 21.9 Interrupt Pointer (I) Interrupt causes of the interrupt pointer numbers A list of interrupts is provided below . The priority for the interrupt pointer numbers and interrupt factors The priority for the interrupt pointer numbers and interrupt factors are indicated.
21 DEVICES 21.10 Constant 221 21 21.10 Const a nt This section explains constants. Decimal const ant (K) Device that specifies decimal data for the program. S pecified by K . (Example: K1234) The specification range is determined by type of argu ment data of instruction using a decimal constant.
222 22 LABELS 22 LABELS Label is identifier (character string) that specifies a characte r string in I/O data or internal processing. When a label is us ed in programming, a program can be created wit hout bei ng conscious about the device No. *1 *1 Label and device can be used in mixed manner .
22 LABELS 223 22 MEMO.
224 APPENDIX Appendix 1 Special Relay List APPENDIX Appendix 1 S pecial Relay List Diagnostic information The special relays for diagnostic information are shown belo w . R: Read only , R/W: Read/Write System information The special relays for system information are shown below .
APPENDIX Appendix 1 Special Relay List 225 A Drive information The special relays for drive information are shown below . R: Read only , R/W: Read/Write SM401 Always OFF R SM402 After RUN, ON for one scan only R SM403 After RUN, OFF for one scan only R SM409 0.
226 APPENDIX Appendix 1 Special Relay List Instruction re lated The special relays related to instruction exec ution are shown below . R: Read only , R/W: Read/Write FX high-speed input and output The special relays for FX high-speed input and ou tput are shown below .
APPENDIX Appendix 1 Special Relay List 227 A SM4521 High-speed counter pulse den sity/Rotation speed measurement (CH6) OFF: S topped ON: Measurement R SM4522 High-speed counter pulse den sity/Rotation.
228 APPENDIX Appendix 1 Special Relay List SM4583 High-speed counter co unt switching (CH4) (1-phase 1- input S/W) OFF: Up-counting ON: Down-counting R/W SM4584 High-speed counter co unt switching (CH.
APPENDIX Appendix 1 Special Relay List 229 A SM4645 High-speed count er ring length (CH2) OFF: Disabled ON: Enabled R/W SM4646 High-speed count er ring length (CH3) OFF: Disabled ON: Enabled R/W SM464.
230 APPENDIX Appendix 1 Special Relay List SM5303 PWM function op eration (CH4) OFF: S topped ON: Operation R SM5500 Built-in position ing instruction activation (axis 1) OFF: Stopped ON: Operation R .
APPENDIX Appendix 1 Special Relay List 231 A SM5645 Built-in positioni ng pulse decelerates stop command (a xis 2) (With remaining dist ance operation) OFF: Pulse output is not stopped ON: Pulse outpu.
232 APPENDIX Appendix 1 Special Relay List Built-in analog The special relays for built-in analog are shown be low . R: Read only , R/W: Read/Write No.
APPENDIX Appendix 1 Special Relay List 233 A FX comp atible area The special relays of FX compatible area are shown below . R: Read only , R/W: Read/Write SM6098 CH2 A/D alarm flag OFF: No alarm ON: A.
234 APPENDIX Appendix 1 Special Relay List SM8016 T ime read display is stopped When SM8016 turns ON, the time display is st opped. R/W SM8017 30 seconds correcti on At the edge from OFF to ON, the RTC i s set to the nearest minute. (When the seco nd data is from 0 to 29, it is set to 0.
APPENDIX Appendix 1 Special Relay List 235 A SM8059 I0 0 disable (Counter interrupt disable) OFF: Interrupt enabled ON: Interrupt disable d R/W SM8063 Serial communication error1 (ch1) OFF: No err.
236 APPENDIX Appendix 1 Special Relay List SM8248 LC48 counting directio n monitoring OFF: Down count operation ON: Up count operation R SM8249 LC49 counting directio n monitoring OFF: Down count oper.
APPENDIX Appendix 1 Special Relay List 237 A Serial communication The special relays for serial communication are shown below . R: Read only , R/W: Read/Write SM8423 MODBUS communication error (latche.
238 APPENDIX Appendix 1 Special Relay List SM8573 Carrier detection flag (ch2) This device turns ON in synchronization with the CD (DCD) signal. R SM8574 Data set rea dy flag (ch2) This device turns ON in synchronizatio n with the DR (DSR) signal.
APPENDIX Appendix 1 Special Relay List 239 A SM8891 Host st ation No. setting SD latch enabled (ch4) OFF: Latch disabled ON: Latch enabled R SM8920 Inverter communication (ch1) OFF: No communicati on .
240 APPENDIX Appendix 2 Special Register List Appendix 2 S pecial Register List Diagnostic information The special register for diagnosti c information are shown below. R: Read only , R/W: Read/Write No. Name Description R/W SD0 Latest self diagnostics error code This register stores the latest self-diagn osis error code.
APPENDIX Appendix 2 Special Register List 241 A SD81 to S D 111 Detailed info rmation 1 • Detailed informati on 1 corresponding to the error code (SD0) is stored. • There are six types of information to be stored as show n in the following figures.
242 APPENDIX Appendix 2 Special Register List SD81 to S D 111 Detailed info rmation 1 (5) System configuration information (6) Number of times information (7) T ime information R SD1 12 Detailed informati on 2 information category • Detailed information 2 informati on category code is stored.
APPENDIX Appendix 2 Special Register List 243 A SD1 13 to SD143 Detailed info rmation 2 • Detailed informati on 2 corresponding to the error code (SD0) is stored. • There are four types of info rmation to be stored as shown in the following figures.
244 APPENDIX Appendix 2 Special Register List System information The special registers for system information are shown below . R: Read only , R/W: Read/Write No. Name Description R/W SD200 Switch S tatus This regist er stores the CPU switch status. 0: RUN 1: STOP R SD201 LED status Thi s regist er stores the LED status.
APPENDIX Appendix 2 Special Register List 245 A System clock The special registers for syst em clock are shown below . R: Read only , R/W: Read/Write Scan information The special registers for scan informatio n are shown below . R: Read only , R/W: Read/Write Drive information The special registers for drive information are shown belo w .
246 APPENDIX Appendix 2 Special Register List Instruction re lated The special registers related to in struction execution are shown below . R: Read only , R/W: Read/Write Mask p attern of interrupt pointers The special registers for the mask pattern of interrupt pointers are shown below .
APPENDIX Appendix 2 Special Register List 247 A FX high-speed input and output The special registers for FX high-sp eed input and outpu t are shown below . R: Read only , R/W: Read/Write SD4124 Error code 15 details This register stores the self-diagno sis error code details.
248 APPENDIX Appendix 2 Special Register List SD4504 High-speed counter minimum value [Low-order] (CH1) This regist er stores the high-speed counter minimum value (CH1).
APPENDIX Appendix 2 Special Register List 249 A SD4572 High-speed counter preset value [Low-ord er] (CH3) This re gister stores the high-spe ed counter preset value (CH3).
250 APPENDIX Appendix 2 Special Register List SD4638 High-speed counter number of pulse s per rotation [Low- order] (CH5) This register stores the high-speed counter number of pulses per rotation (CH5).
APPENDIX Appendix 2 Special Register List 251 A SD4714 High-speed counter minimum value [Low-order] (CH8) This regist er stores the high-speed counter minimum value (CH8).
252 APPENDIX Appendix 2 Special Register List SD5042 Pulse width measurement falling rin g counter value [Low- order] (CH2) This register stores the pulse wid th measurement falling ring counter value (CH2).
APPENDIX Appendix 2 Special Register List 253 A SD5082 Pulse width measurement falling rin g counter value [Low- order] (CH4) This register stores the pulse wid th measurement falling ring counter value (CH4).
254 APPENDIX Appendix 2 Special Register List SD5348 PWM pulse output number [Low-order] (CH4) This regist er stores the PWM pulse output number (CH4). R/W SD5349 PWM pulse output number [ High-order] (CH4) SD5350 PWM pulse width [Low-order] (CH4) This reg ister stores the PWM pulse width (CH4).
APPENDIX Appendix 2 Special Register List 255 A SD5546 Built-in positioning execution ta ble number (axis 2) This register stores the execution table number of built-in positioning (a xis 2). R SD5550 Built-in positioning error code (axis 2) This register stores the error code of built-in positioning (axis 2).
256 APPENDIX Appendix 2 Special Register List Built-in analog The special registers for built-in analog are shown be low . R: Read only , R/W: Read/Write SD5613 Built-in positioning zero-return dwell time (axis 3) This register stores the zero-return dwell time of built-in positioning (a xis 3).
APPENDIX Appendix 2 Special Register List 257 A FX Comp atible area The special registers for FX compatible area are shown below . R: Read only , R/W: Read/Write SD6034 CH1 Process alarm lower lower limit value This regist er stores the process alarm lower lower limit value.
258 APPENDIX Appendix 2 Special Register List SD8018 RTC: Y ear data This register stores the year data. R SD8019 RTC: Day of week data This register stores the day of week data. R SD8039 Constant scan duration This regist er stores the constant scan duration.
APPENDIX Appendix 2 Special Register List 259 A SD8212 Code of communication error at slave st ation No.1 This re gister stores the code of communication error at slave station No.1. R SD8213 Code of communication error at slave st ation No.2 This re gister stores the code of communication error at slave station No.
260 APPENDIX Appendix 2 Special Register List Serial communication The special registers for serial communication are shown below . R: Read only , R/W: Read/Write SD8419 Operation mode (ch1) This register sto res the operation mode (ch1).
APPENDIX Appendix 2 Special Register List 261 A SD8573 Receive sum (received data) (ch2) This register stores the rece ive sum (received data) (ch2). R SD8574 Receive sum (received result) (ch2) This regi ster stores the receive sum (received result) (ch2).
262 APPENDIX Appendix 2 Special Register List SD8860 Communication format (ch1) This register stores the communication format (ch1). R SD8861 Slave node address (ch1) This register stores the host st ation number (ch1). R SD8862 Slave response timeout (ch1) This register stores the slave response time out (ch1).
APPENDIX Appendix 2 Special Register List 263 A Built-in Ethernet The special registers for built -in Etherne t are shown below . R: Read only , R/W: Read/Write SD9061 Code of communication error at master sta tion This register stores the code of communicati on error at master station.
264 APPENDIX Appendix 2 Special Register List SD10271 Remote p assword lock status system port b2: MELSOFT application communication port (TCP) b3: MELSOFT direct conn ection 0: Unlock status/remote p.
APPENDIX Appendix 2 Special Register List 265 A SD10714 Number of registered pr edefined protocols S tores the pr ot ocol number of the registere d protocol setting dat a. R SD10722 Predefin ed protocol registration (1 to 16) Whether protocol settin g data is registered or not is stored.
266 APPENDIX Appendix 2 Special Register List SD10758 Connection No.1 protocol execut i on count S tores the number of protocol executions in Connection No.1. 0: Protocol not executed 1 to 65535: Number of executions R SD10759 Connection No.1 protocol cancella tion specificatio n Cancels the protocol exec uted in connection No.
APPENDIX Appendix 2 Special Register List 267 A SD10778 Connection No.2 protocol execut ion count S tores the number of protoc ol executions in connection No.2. 0: Protocol not executed 1 to 65535: Number of executions R SD10779 Connection No.2 protocol cancella tion specificatio n Cancels the protocol exec uted in connection No.
268 APPENDIX Appendix 2 Special Register List SD10798 Connection No.3 protocol execut ion count S tores the number of protoc ol executions in connection No.3. 0: Protocol not executed 1 to 65535: Number of executions R SD10799 Connection No.3 protocol cancella tion specificatio n Cancels the protocol exec uted in connection No.
APPENDIX Appendix 2 Special Register List 269 A SD10818 Connection No.4 protocol execut ion count S tores the number of protoc ol executions in connection No.4. 0: Protocol not executed 1 to 65535: Number of executions R SD10819 Connection No.4 protocol cancella tion specificatio n Cancels the protocol exec uted in connection No.
270 APPENDIX Appendix 2 Special Register List SD10838 Connection No.5 protocol execut ion count S tores the number of protoc ol executions in connection No.5. 0: Protocol not executed 1 to 65535: Number of executions R SD10839 Connection No.5 protocol cancella tion specificatio n Cancels the protocol exec uted in connection No.
APPENDIX Appendix 2 Special Register List 271 A SD10858 Connection No.6 protocol execut ion count S tores the number of protoc ol executions in connection No.6. 0: Protocol not executed 1 to 65535: Number of executions R SD10859 Connection No.6 protocol cancella tion specificatio n Cancels the protocol exec uted in connection No.
272 APPENDIX Appendix 2 Special Register List SD10878 Connection No.7 protocol execut ion count S tores the number of protoc ol executions in connection No.7. 0: Protocol not executed 1 to 65535: Number of executions R SD10879 Connection No.7 protocol cancella tion specificatio n Cancels the protocol exec uted in connection No.
APPENDIX Appendix 2 Special Register List 273 A SD10898 Connection No.8 protocol execut ion count S tores the number of protoc ol executions in connection No.8. 0: Protocol not executed 1 to 65535: Number of executions R SD10899 Connection No.8 protocol cancella tion specificatio n Cancels the protocol exec uted in connection No.
274 APPENDIX Appendix 3 Error Code Appendix 3 Error Code The CPU module stores error code in special registe r (SD) upon detection of an error using the self-diagnostics function. The error details and cause can be identified by ch ecking the error co d e.
APPENDIX Appendix 3 Error Code 275 A How to clear errors Continuation errors can be clea red. ( Page 1 12 Error Cl ear) List of error codes Self-diagnostics error codes of the CPU module (1000H to 3FFFH) The following table lists the error codes detected by the self-diagno stics function of the CPU module.
276 APPENDIX Appendix 3 Error Code 1FE5H Module configuration error • The I/O numbers of the re served module specified in t he I/O assignment setti ng of the parameters overlap those of other modules. • Make sure that the parameters are consistent with the connect ions.
APPENDIX Appendix 3 Error Code 277 A 2301H Security key authentication error • The program is locked by the security key , but the securit y key is not written in the CPU module.
278 APPENDIX Appendix 3 Error Code 2823H Device specification error • Ve rify that the specified module has buffer memory . • Check the buffer memory range of the specified module. • Ve rify that the size specified from the specified buf fer memory number is within the buf fer memory range.
APPENDIX Appendix 3 Error Code 279 A 3057H System bus error • A timeout occurred duri ng communication with a connected modu le when an instruction was executed. • V erify that extension cables are correctl y connected. • V erify that the version of the CPU modu le is compatible with t he module where the error was detected.
280 APPENDIX Appendix 3 Error Code 3341H FOR-NEXT instruction error • The relationship between FOR and NEXT instructions is invalid. • Make sure that FOR and NEXT instructions are each executed the same number of times. In addition, check synt ax for any invalid jump instructions.
APPENDIX Appendix 3 Error Code 281 A 33F3H Program structure error • More than two STL instructions for the same S number are programmed. • Recheck the structure of the step ladd er. Error location information At power-on, at RESET , at STOP RUN state 3400H Operation error • A value of 0 was input as a divisor in an applied instruction.
282 APPENDIX Appendix 3 Error Code 3514H Operation error • The auto tuning result in the step response method i s abnormal. • The deviation at start of auto tu ning is 150 or less. • The deviation at end of auto tuning is 1/3 or more of the deviati on at start of auto tuning.
APPENDIX Appendix 3 Error Code 283 A 361 1H CH1 pulse width, period setting error • The value of the special register to set the pulse width and cycle of the PWM instruction is abn ormal. • Modify the value of the special register and restart PW M.
284 APPENDIX Appendix 3 Error Code 3634H Axis 4 positioning address error • The 32-bit range was exceeded when the unit of the positioning address was converted. • The total transfer dist ance before and after the int errupt of the DVIT instruction or 1-speed positioning with interruption exceeded 7FFFFFFFH.
APPENDIX Appendix 3 Error Code 285 A 3663H Axis 3 error stop (immediately stop) • When pulses were being output or positioning was rising, the PLC stop ped the pulse output immediately by the pulse stop command or detection of the all outputs disab le flag.
286 APPENDIX Appendix 3 Error Code 3694H Axis 4 positioning table shif t error (table shif t) • T able shift cannot be co mpleted in time because one or more tables shifted per 10 ms.
APPENDIX Appendix 3 Error Code 287 A 3C00H Hardware failure • A hardware failure was detected. • Reset the CPU module and perform RUN. If the same error app ears, the hardware of the CPU module may be malfunctioning. Consult your local Mit subishi Electric represen tative.
288 APPENDIX Appendix 3 Error Code Error codes of the CPU module (4000H to 4FFFH) The following table lists the error codes detected by other ca uses than the self-diagnostics function of the CPU module. Error code Error name Error details and cause Action 4000H Common error • Serial communication sum ch eck error .
APPENDIX Appendix 3 Error Code 289 A 4053H Protect error • An error occurred when writing d ata to the specified drive (memory). • Check the specified drive (memory).
290 APPENDIX Appendix 3 Error Code 41D0H File related error • The specified drive (memory) has no free space. Or , the number of files in the dire ctory of the sp ecified dr ive (memory) has exceeded the maximum. • Execute again after increasing the free sp ace of the drive (memory).
APPENDIX Appendix 4 Parameter List 291 A Appendix 4 Parameter List A parameter list is shown below . System p arameters CPU p arameters Classification-Level 1 Classification -Level 2 Classificat ion-Level 3 I/O Assignmen t Setting Mod el Name Intelligent Module No.
292 APPENDIX Appendix 4 Parameter List Module p arameters Ethernet Port 485 Serial Port ■ MELSOFT Connection ■ Non-Protocol Communication ■ MC Protocol Classification-Level 1 Classification -Lev.
APPENDIX Appendix 4 Parameter List 293 A ■ MODBUS_RTU Communication ■ Predefined Protocol Support Functi on ■ Inverter Communication ■ N:N Network SM/SD Setting Latch Setting Advanced Settings.
294 APPENDIX Appendix 4 Parameter List High Speed I/O Set tings ■ General/Interrupt/Pulse catch Link Device Pattern Pattern Link Device Bit Device Link Device Word Device SM/SD Setting La tch Setting Host Station No.
APPENDIX Appendix 4 Parameter List 295 A ■ High S peed Counter ■ Pulse Wid th Measurement Classification-Level 1 Classification -Level 2 Classificat ion-Level 3 Basic Settings Use/Do Not Use Count.
296 APPENDIX Appendix 4 Parameter List ■ Positioning ■ PWM Classification-Level 1 Classification -Level 2 Classificat ion-Level 3 Basic Sett ings Basic Parameters 1 Pulse Output Mode Output Device (PULSE/CW) Output Device (SIGN/CCW) Rotation Di rection Setting Unit Setting Pulse No.
APPENDIX Appendix 4 Parameter List 297 A Input Response Time Setting Analog Input Setting Analog Output Setting Extended Board Setting Memory card p arameters Classification-Level 1 Classification -Le.
298 INDEX A Annunciator (F) . . . . . . . . . . . . . . . . . . . . . . . . 206 B Boot operation . . . . . . . . . . . . . . . . . . . . . . . . 104 Built-in analog . . . . . . . . . . . . . . . . . . . . . . . . . 201 C Character strin g constant . .
299 I Remote RESET . . . . . . . . . . . . . . . . . . . . . . . . 89 Remote RUN . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Remote STOP . . . . . . . . . . . . . . . . . . . . . . . . . 86 Retentive timer (ST) . . . . . . . . . . . . . . .
300 REVISIONS 2014 MITSUBISHI ELECTRIC CORPORA TION Revision date Revision Description October 2014 A First Edition January 2015 B ■ Added function s Fixed scan execution type progr am, Onl ine change, PID control function, FX3-comp atible high- speed counter functio n, Routine timer ■ Added or modified part s Section 1.
301 W ARRANTY 1. Please confirm the following product warranty details before using this product. [Gratis Warranty Term] If any faults or defects (hereinafter "Failure") found to be the resp.
302 TRADEMARKS Microsoft and Windows are either registered trademarks or trademarks of Microso ft Corporat ion in the United S tates and/or other countries. Ethernet is a trademark of Xerox Corporation. MODBUS is a registered trademark of Schneider Electric SA.
.
HEAD OFFICE: TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN Specifications are subject to change without notice. When exported from Japan, this manual does not require application to the Ministry of Economy , T rade and Industry for service transaction permission.
Un point important après l'achat de l'appareil (ou même avant l'achat) est de lire le manuel d'utilisation. Nous devons le faire pour quelques raisons simples:
Si vous n'avez pas encore acheté Mitsubishi Electronics FX5 c'est un bon moment pour vous familiariser avec les données de base sur le produit. Consulter d'abord les pages initiales du manuel d'utilisation, que vous trouverez ci-dessus. Vous devriez y trouver les données techniques les plus importants du Mitsubishi Electronics FX5 - de cette manière, vous pouvez vérifier si l'équipement répond à vos besoins. Explorant les pages suivantes du manuel d'utilisation Mitsubishi Electronics FX5, vous apprendrez toutes les caractéristiques du produit et des informations sur son fonctionnement. Les informations sur le Mitsubishi Electronics FX5 va certainement vous aider à prendre une décision concernant l'achat.
Dans une situation où vous avez déjà le Mitsubishi Electronics FX5, mais vous avez pas encore lu le manuel d'utilisation, vous devez le faire pour les raisons décrites ci-dessus,. Vous saurez alors si vous avez correctement utilisé les fonctions disponibles, et si vous avez commis des erreurs qui peuvent réduire la durée de vie du Mitsubishi Electronics FX5.
Cependant, l'un des rôles les plus importants pour l'utilisateur joués par les manuels d'utilisateur est d'aider à résoudre les problèmes concernant le Mitsubishi Electronics FX5. Presque toujours, vous y trouverez Troubleshooting, soit les pannes et les défaillances les plus fréquentes de l'apparei Mitsubishi Electronics FX5 ainsi que les instructions sur la façon de les résoudre. Même si vous ne parvenez pas à résoudre le problème, le manuel d‘utilisation va vous montrer le chemin d'une nouvelle procédure – le contact avec le centre de service à la clientèle ou le service le plus proche.