Manuel d'utilisation / d'entretien du produit IM649 du fabricant Lincoln Electric
Aller à la page of 74
Wave Des igne r T M SOFTW ARE OPERA T OR’S MANU AL IM649 May, 1999 Safety Depends on You Lincoln arc welding and cutting equipment is designed and built with safety in mind. However, your overall safety can be increased by proper installation ... and thought- ful operation on your part.
.
WAVE DESIGNER i T ABLE OF CONTENTS Page License Information ..................................................................................................... ii Introduction .........................................................................
By clicking the acceptance button or installing the software, you are consenting to be bound by and are becoming a party to this agreement. If you do not agree to all of the terms of this agreement, click the button that indicates you do not accept the terms and do not install the software.
JAVA RUNTIME ENVIRONMENT, VERSION 1.1.6, BINARY CODE LICENSE This binary code license ("License") contains rights and restrictions associated with use of the accompanying Java Runtime Environment software and documentation ("Software").
iv iv LICENSE INFORMA TION WAVE DESIGNER.
1.1 PR ODUCT O VER VIEW Wave Designer is a visual, interactive software application used to modify wave shapes for use with programmable waveform-controlled welding machines such as the Power Wave 455. The Wave Designer software package includes a standard set of waveforms commonly used in commercial and industrial welding applications.
In Windows NT 4.0 log on as Administrator Start | Settings | Control Panel | System | Performance Virtual Memory Change... | Initial Size (MB): 100 | Set | OK Do you want to restart your computer now? Yes An RS-232 serial communication cable is required to use Wave Designer software with Power Wave power sources.
2.1 FILE ST ORA GE LOCA TIONS The Wave Designer default home directory is C:Program FilesWaveDesigner. Subdirectories included with Wave Designer are as follows: • arcScope - user data file for ArcS.
FIGURE 2-1. WAVE DES IGNER STARTUP SCREEN. 2-2 Section 2 SOFTW ARE INST ALLA TION WAVE DESIGNER Lincoln Electric Wave Designer Version 1.0 Copyright © 1998 The Lincoln Electric Company All Rights Reserved United States Patent Pending Comments? Write to wavedesigner@lincolnelectric.
Section 2 2-3 SOFTW ARE INST ALLA TION WAVE DESIGNER SW1 SW2 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 ON ON CONTROL BOX CONTROL BOARD 27850003 FRONT PA N E L POWER SOURCE RS232 CABLE COMPUTER SYSTEM 27850004 FIGURE 2-2. CONTROL BOARD DIP SWITCH SETTING. FIGURE2-3.
2.4 EQUIPMENT/SOFTW ARE ST ARTUP When the Wave Designer software installation is complete, Wave Designer is listed among the programs you can start up from the Windows startup screen. Click on START, point to the programs option, then click on the Wave Designer option.
3.1 SYNERGIC WELDING AND WORKPOINTS Prior to using Wave Designer it is important to have a good understanding of the concepts of synergic welding and workpoints. Synergic welding is basically “one knob control” of a welding process; all other variables of the process are adjusted by the power source based on the single controlling variable.
3.2 W ORKING IN WAVE DESIGNE R 3.2.1 W A VEFORM EDIT OR WINDO W Refer to the Waveform Editor window in Figure 3-2 and the related usage instructions. FIGURE 3-2.
Section 3 3-3 SOFTW ARE OPERA TION WAVE DESIGNER 5. Optional Windows The optional window buttons open additional windows used during wave shaping. Optional windows in the pulse Waveform Editor include Start, Adapt, Short, End, and About. Details about the use of most optional windows is covered in the applicable appendix (i.
3-4 Section 3 SOFTW ARE OPERA TION WAVE DESIGNER 3.2.2 W A VEFORM EDIT OR T OOL BAR There are four menu selections available on the pulse waveform editor tool bar. The following describes how to use the File, Tools, and Print menus. The Help menu is self explanatory.
3.2.2.2 TOOLS MENU The Tools menu includes waveform display options and other tools required to operate Wave Designer . The Tools menu options include the following: Pulse Editor Ctrl+P Display the Pulse Waveform Editor screen. STT Editor Ctrl+E Display the STT Waveform Editor screen.
3.2.2.3 PRINT MENU Print menu options enable you to print out a waveform display, ArcScope screen, or tabular waveform data listing as shown below. The Print menu options include the following: 3-6 Section 3 SOFTW ARE OPERA TION WAVE DESIGNER Wave Designer Pro Waveform Editor Printed on Thu Jul 09 07:24:50 EDT 1998 .
3.2.3 EDITING AND SELECTING W ORKPOINTS For each custom welding application, unique wave shapes are developed for specific workpoints within the range of workpoints defined for the application. In Wave Designer the range of workpoints and the specific workpoint values are defined in a Workpoint Editor window.
3.2.3.1 EDITING W ORKPOINTS Clicking on the Edit button in the waveform Editor window opens a Workpoint Editor window. The Workpoint Editor window displays a listing of workpoints for the selected standard waveform.
3.2.3.2 SELECTING W ORKPOINTS Clicking on the workpoint display box in the waveform Editor window opens a Workpoint pulldown menu. The pulldown menu displays the listing of workpoints defined for the active waveform.
3.2.4 EDITING V ARIABLE P ARAMETERS The following is a summary of the different methods available for changing (editing) parameter values on the Waveform Editor screen and other display screens accessible through Wave Designer . Read the following information carefully before making parameter changes on the Waveform Editor screen.
Section 3 3-11 SOFTW ARE OPERA TION WAVE DESIGNER 3.3 W A VE DESIGN PROCESS The wave design process is a series of operations that allows you to quickly modify a standard waveform to fit your specific welding application.
3-12 Section 3 SOFTW ARE OPERA TION WAVE DESIGNER 3.4 DO WNLO ADING W A VE SHAPES The Power Wave stores wave shapes in the welding machine controller memory. The memory structure does not allow an upload or download of individual wave shapes. When downloading wave shapes to the welding machine, the entire welding machine memory must be overwritten.
Section 3 3-13 SOFTW ARE OPERA TION WAVE DESIGNER 2. Select a blank Mode or a defined Mode for overwrite by clicking on a box to the left of the Modes listing. When the Mode is selected, a checkmark appears in the Mode box. 3. Enter the file name of the desired waveform in the box to the right of the selected Mode number.
3-14 Section 3 SOFTW ARE OPERA TION WAVE DESIGNER.
4.1 INTR ODUCTION The following describes the ArcScope application included with Wave Designer Pro . The ArcScope application provides oscilloscope type displays of power source output waveforms on your computer monitor. 4.1.1 USING THE ARC SCOPE WINDO W Refer to the ArcScope window in Figure 4-1 and the related window usage instructions.
6. Status Bar The status bar provides a scrolled listing of recent Wave Designer program operations, error conditions, etc., and three operational status indicators. The adaptive indicator is also a button that toggles between the Adaptive and Non-Adaptive mode.
File | Save Scope: Use the Save Scope option to save the scope trace data in ASCII text format for use in a word editor or spreadsheet data processing application. File | Open Scope Trace: Use the Open Scope Trace option to open a saved scope trace data file.
4-4 Section 4 ARCSCOPE WAVE DESIGNER.
5.1 O VER VIEW Wave Designer troubleshooting is limited to the software application. If the welding machine does not respond, recheck the interface connection and communication setup requirements in section 2 of this manual. Refer to the welding machine service manuals for troubleshooting suspected equipment malfunctions.
5-2 Section 5 TR OUBLESHOO TING WAVE DESIGNER.
A.1 APPENDIX O VER VIEW This appendix provides a series of discussions on pulse wave shaping principles and the development of custom GMAW pulse waveforms. The contents of this appendix are arranged as follows: Paragraph No./Title Contents Description A.
A-2 Appendix A PULSE W A VE SHAPING PRINCIPLES WAVE DESIGNER Pulse Waveform Editor Wire Feed Speed Ramp Up Rate Peak Amps Peak Time ms Tailout Time Tailout Speed Stepoff Amps Backgrd Amps Backgrd Time Frequency Ramp Overshoot % 26.4 33.4 21 40 .100 3.
Appendix A A-3 PULSE W A VE SHAPING PRINCIPLES WAVE DESIGNER • From time T1 to T2: Background current maintains an arc, and a weld bead starts to form.
A.3 AD APTIVE AND NON-AD APTIVE MODE To proficiently develop welding procedures using Wave Designer , the key concept of Adaptive versus Non-Adaptive welding must be understood. Wave Designer allows the user to set the machine into either adaptive or non-adaptive mode.
A.4 PULSE W A VE DESIGN PROCESS The Wave Designer software interfaces with the welding machine controller to permit real time communication of pulse wave design changes. Refer to paragraph 2.3 for equipment interface connections. Use the following wave design process to customize a standard wave shape.
A.4.1 SELECTING A ST ARTING W A VE SHAPE When customizing a waveform for a specific welding application, we recommend that you use a waveform in an existing weld file. An existing weld file can be selected from the systemWeldFiles folder in the Wave Designer directory as follows: a.
NOTE: You can edit one or more workpoints to values other than the defaults. However, the listing of wire feed speeds displayed must be the same or increasing from top to bottom. All twelve wire feed speeds must be assigned values, but multiple workpoints can share the same value.
2. Open the Adaptive Loop / Find the Optimal Ar c Characteristics Use the following weld trials and adjustment sequence to tune the selected waveform for your weld application at the designated workpoint (wire feed speed).
3. Close the Adaptive Loop / Adjust the P eak V oltage a. If the adaptive stickout window is not open, click on the button to open the window. Select the adaptive option to close the adaptive loop.
5. Adjust the Start Control P arameters (Optional) The start control parameters can be adjusted to define how the welding machine will respond when the arc is struck. To view the start control window, click on the button on the Waveform Editor screen.
6. Adjust the Shorting Control P arameters (Optional) The shorting control parameters can be adjusted to define how the welding machine will respond when the arc shorts to the weld puddle. To view the shorting control window, click on the button on the Waveform Editor screen.
7. Adjust the End Condition P arameters (Optional) The end condition parameters can be adjusted to define how the welding machine will respond at the end of a weld application. To view the end condition window, click on the button on the Waveform Editor screen.
8. “Go Figure” / Make the W avef orm Synergic Weld synergy is established by shaping the 2nd and all subsequent workpoints. Being synergic, the waveform parameters automatically adjust to programmed data table values. The data table values are unique for selected wire feed speeds.
A.5 PRIMAR Y PULSE W A VEFORM COMPONENTS The following paragraphs describe how peak current, peak time, frequency, and background current effect weld droplet transfer. A.5.1 PEAK CURRENT AND PEAK TIME A combination of peak current and peak time, Figure A-6, applies a force to detach the weld droplet from the electrode and propel it across the arc.
A.5.2 FREQUENCY Frequency, Figure A-7, is the number of pulses per second or, in theory, the number of weld droplets per second. Since increasing the frequency generates more pulses in a given time period, higher frequencies generate higher average current levels.
A.6 SECOND AR Y W A VEFORM P ARAMETERS A.6.1 RAMP-UP RA TE The ramp-up rate is the speed of current climb from the background current level to the peak current level. Faster ramp-up rates tend to produce a plasma plume that quickly surrounds the end of the next droplet.
A.7 APPLICA TION EXERCISE This application exercise steps the user through the development of a basic PowerWave welding program using Wave Designer . Your application most likely will vary from this example but the concepts outlined are recommended for all development work.
Our Experiment: We found multiple droplet detachment with an arc length that was too long at these waveform settings. To attain the proper droplet detachment, we reduced the peak current value to 250 amps and found improved weld droplet transfer. But reducing the peak current also caused the arc to be shorter.
7. Click on the button to display the WorkPoint Editor window. Check only those wire feed speed points that have been developed (only 150 in/min. at this point). The WorkPoint Editor can also be used to change the wire feed speed value of a workpoint.
A-20 Appendix A PULSE W A VE SHAPING PRINCIPLES WAVE DESIGNER 8. For a second workpoint we went to 300 in/min. Select the 300 in/min. wire feed speed from the pulldown menu in Waveform Editor window. Reset the PowerFeed for 300 in/min. with a 1.00 trim.
Appendix A A-21 PULSE W A VE SHAPING PRINCIPLES WAVE DESIGNER 12. Open the “Edit” screen and select only those workpoints that have been developed (150 and 300 in/min.). Select the button to interpolate the remaining workpoints. The function gives a estimation of the values needed for the other wire feed speeds.
A-22 Appendix A PULSE W A VE SHAPING PRINCIPLES WAVE DESIGNER.
B.1 APPENDIX O VER VIEW This appendix provides a series of discussions on STT wave shaping principles and the development of custom STT waveforms. The contents of this appendix are arranged as follows: Paragraph No./Title Contents Description B.2 STT Overview How the STT waveform transfers weld droplets to the weld surface B.
B-2 Appendix B STT W A VE SHAPING PRINCIPLES WAVE DESIGNER STT Waveform Editor Wire Feed Speed Peak Amps Tailout Speed Pinch Start Pinch | Peak Peak Time dV | dt detect Backgrd Amps 14.00 1.0 .70 140 Edit Start About Explain Wave Designer Pro Off Line - stt.
Appendix B B-3 STT W A VE SHAPING PRINCIPLES WAVE DESIGNER 27850060 BA CKGROUND AMPS PINCH AMPS PEAK AMPS TA I L O U T T 1 T 2 T 3 T 5 T 6 T 7 T 0 FIGURE B-2. WELD DROPLET TRANSFER. • From time T 0 to T 1 : Background current is a steady-state current level, between 50 and (Background Current) 100 Amps that maintains an arc to form a weld bead.
B.3 STT (SURF A CE TENSION TRANSFER) The Invertec STT power source is a high-frequency, current-controlled machine that delivers power to the arc based on immediate arc requirements. The Invertec STT produces large electrode current changes within microseconds.
T 2 – T 3 The pinch mode applies an increasing, dual-slope ramp of current to the shorted electrode. The dual slope ramp of current accelerates the transfer of molten metal by the electric pinch forces. The pinch force is directly proportional to the square of the pinch current.
B.4 STT W A VE DESIGN PROCESS The Wave Designer software interfaces with the welding machine controller to permit real time communication of STT wave design changes. Refer to paragraph 2.3 for equipment interface connections. Use the wave design process to customize a standard wave shape.
B.4.1 SELECTING A ST ARTING W A VE SHAPE When customizing a waveform for a specific welding application, we recommend that you use a waveform in an existing weld file. An existing weld file can be selected from the systemWeldFiles folder in the Wave Designer directory as follows: a.
NOTE: You can edit one or more workpoints to values other than the defaults. However, the listing of wire feed speeds displayed must be the same or increasing from top to bottom. All four wire feed speeds must be assigned values, but multiple workpoints can share the same value.
2. Find the Optimal Ar c Characteristics Use the following weld trials and adjustment sequence to tune the selected waveform for your weld application at the designated workpoint (wire feed speed). Weld trials and adjustments are more easily performed with one person welding while you adjust the waveform parameters at the computer terminal.
3. Adjust the Start Control P arameters (Optional) The start control parameters can be adjusted to define how the welding machine will respond when the arc is struck. To view the start control window, click on the button on the Waveform Editor screen.
4. “Go Figure” / Make the W avef orm Synergic Weld synergy is established by shaping the 2nd and all subsequent workpoints. Being synergic, the waveform parameters automatically adjust to programmed data table values. The data table values are unique for selected wire feed speeds.
B.5 PRIMAR Y STT W A VEFORM COMPONENTS The following paragraphs describe how peak current, background current, and tailout effect weld droplet transfer. B.5.1 PEAK CURRENT The peak current control acts similar to an “arc pinch” control. Peak current serves to establish the arc length and promote good fusion.
B.5.3 T AILOUT The tailout provides additional heat without the molten droplet becoming too large. Increase tailout as needed to add heat to the arc without increasing arc length. (This will allow for faster travel speeds and improved wetting). As tailout is increased, the peal and/or background current is usually reduced.
B.6 SECOND AR Y STT W A VEFORM COMPONENTS NOTE: The Invertec STT power source circuitry automatically establishes proper values for most primary and secondary waveform components. The values can be adjusted, but should not be set far from their automatically set values.
STT W A VE SHAPING PRINCIPLES WAVE DESIGNER B.7 APPLICA TION EXERCISE This application exercise steps the user through the development of a basic PowerWave/STT welding program using Wave Designer . Your application most likely will vary from this example but the concepts outlined are recommended for all development work.
2. Pick a wire feed speed from the Wire Feed Speed pulldown menu. We wanted to start with a 130 in/min. WFS. But 130 is not a workpoint in the selected wave shape application. Use the Workpoint Editor window to change the second workpoint (170 in/min.
A Adaptive Loop .......................................................................................................... A-4 Adaptive Types ........................................................................................................ A-9 Adaptive and Non-Adaptive Mode .
M Making the Waveform Synergic .............................................................................. A-13 O Open Circuit Voltage ................................................................................................ A-10 Operation, Software .
U Upgrade Firmware .................................................................................................. 2-5 User Responsibility .................................................................................................. 1-1 V Voltage, Arc Reestablish .
INDEX Index-4 WAVEDESIGNER.
Un point important après l'achat de l'appareil (ou même avant l'achat) est de lire le manuel d'utilisation. Nous devons le faire pour quelques raisons simples:
Si vous n'avez pas encore acheté Lincoln Electric IM649 c'est un bon moment pour vous familiariser avec les données de base sur le produit. Consulter d'abord les pages initiales du manuel d'utilisation, que vous trouverez ci-dessus. Vous devriez y trouver les données techniques les plus importants du Lincoln Electric IM649 - de cette manière, vous pouvez vérifier si l'équipement répond à vos besoins. Explorant les pages suivantes du manuel d'utilisation Lincoln Electric IM649, vous apprendrez toutes les caractéristiques du produit et des informations sur son fonctionnement. Les informations sur le Lincoln Electric IM649 va certainement vous aider à prendre une décision concernant l'achat.
Dans une situation où vous avez déjà le Lincoln Electric IM649, mais vous avez pas encore lu le manuel d'utilisation, vous devez le faire pour les raisons décrites ci-dessus,. Vous saurez alors si vous avez correctement utilisé les fonctions disponibles, et si vous avez commis des erreurs qui peuvent réduire la durée de vie du Lincoln Electric IM649.
Cependant, l'un des rôles les plus importants pour l'utilisateur joués par les manuels d'utilisateur est d'aider à résoudre les problèmes concernant le Lincoln Electric IM649. Presque toujours, vous y trouverez Troubleshooting, soit les pannes et les défaillances les plus fréquentes de l'apparei Lincoln Electric IM649 ainsi que les instructions sur la façon de les résoudre. Même si vous ne parvenez pas à résoudre le problème, le manuel d‘utilisation va vous montrer le chemin d'une nouvelle procédure – le contact avec le centre de service à la clientèle ou le service le plus proche.