Manuel d'utilisation / d'entretien du produit 60 du fabricant II Morrow Inc.
Aller à la page of 336
.
No part of this document may be reproduced in any form or by any means without the express written consent of UPS Aviation Technologies, Inc. II Morrow, UPS Aviation Technologies, and Apollo are trademarks of UPS Aviation Technologies, Inc. © 2001 by UPS Aviation Technologies, Inc.
Welcome ... Welcome to a new era of aviation navigation. Once again, II Morrow Inc. has set new standards in features and ease of use for the general aviation public. The Apollo GX-series of products are unequaled in providing the features, level of performance, and reliability that aviation users require.
History of Revisions Revision Date Software Ver. Manual P/N January 1998 2.1 560-0961-00 June 1998 2.2 560-0961-01 January 1999 2.2 560-0961-01a March 1999 3.
Important Notice iii The Global Positioning System (GPS) is operated by the United States Department of Defense which is solely responsible for the accuracy, daily operation, and maintenance of the satellite constellation.
Conventions The SMALL knob is the smaller, inner knob of the two concentric rotary knobs used to look at or change information on the display. When only the SMALL knob is shown next to an example, turn the SMALL knob. The LARGE knob is the larger, outer knob of the two concentric rotary knobs used to look at or change information on the display.
Table of Contents Introduction ..............................................1 - 1 Apollo GX Features .................................1 - 1 Display ..............................................1 - 2 External Annunciators ............................
Range (Rge) ........................................3 - 4 Course Deviation Indicator (CDI) and Distance Off Track . 3-5 TO/FROM Indicator ................................3 - 6 Desired Track (Dtk) .................................3 - 6 Leg (FROM-TO) Distance .
Approach GPSS Operation .......................... 3-38 GPSS Rules ....................................... 3-38 Tuned Station ........................................ 3-39 Tuning to a VOR ................................... 3-39 Tuning to a Localizer .
Fly Direct To A US Grid ............................ 4-30 Create a User Waypoint By Basic Grid ................. 4-30 Fly Direct To A Basic Grid ........................... 4-32 Setting Up A Search Pattern .......................... 4-32 Waypoint Database .
Delete Plan ........................................ 6-18 Hold ............................................. 6-18 Holding Patterns (GX50/60) ......................... 6-19 Continue .......................................... 6-21 Load Approach (GX50/60 Only) .
Encoding Altimeter ................................... 7-20 Air Data Info ......................................... 7-21 Air Speed ......................................... 7-21 Air Temperature ................................... 7-21 Altitude and Rate of Climb .
Manually Selecting a Flight plan Leg .................... 9-19 Flight Plan Waypoint Sequencing ....................... 9-20 Procedure Turns ...................................... 9-21 Procedure Turn at FAF ................................ 9-22 Holding Patterns .
User Stored Frequencies ............................. 10-7 Weather Channels .................................. 10-7 Emergency Channel ................................ 10-8 Intercom Function .................................... 10-8 Stuck Mic .........
Introduction This guide describes the operation of the Apollo GX line of products. The GX50 and GX55 are GPS receivers. The GX60/65 models combine the GPS receiver with a VHF comm radio in a single package.
be saved with up to twenty legs for setting up custom tailored routes. The detailed Navigation information displays are also customizable and can be set to automatically scroll through the desired information.
External Annunciators When external indicators are installed, the Apollo GX will also provide an external indication when Parallel Track (PTK) is activated or a Message (MSG) is received. The GX50/60 also have external annunciator controls for OBS/Hold and Approach Active.
Keys There are two types of keys that allow you access to the functions in your Apollo GX: permanent “hard” keys and displayed “smart” keys. Seven back lighted permanent keys are used to reach the functions or perform other operations of the Apollo GX.
MAP (Graphic Moving Map) The Map key starts the Moving Map function. The entire display is used as a graphic map display. DIRECT-TO The DIRECT-TO key is used to define a direct course from your present position to a waypoint. Press once to select a waypoint.
SYS (System Mode) Press the SYS key to reach the System mode functions. System mode is used to make system level adjustments and modify Nav function displays. SKIP (Start-Up Option) Press the SKIP key during the start-up procedure to bypass the start-up tests.
Waypoint SCAN Key When the SCAN key is active (highlighted) in the Moving Map display, turning the LARGE knob will move between the nearest airports. You can then press INFO to view information about that airport. In an emergency press DIRECT-TO and ENTER to fly direct to the highlighted airport.
Communicati ons Radio Mode Smart Keys (GX60/65) The Recall (RCL), Monitor (MON), Memorize (MEM), and FLIP/FLOP (<->) keys are available in the GX60/65 after the COM soft key has been pressed. COM (GX60/65) Press the COM key to operate the Communications radio functions.
Apollo GX Features Navigation Features 30 Reversible Flight Plans of up to 20 Legs with Automatic Sequencing 500 User-Defined Waypoints Nav Displays Lat/Lon Bearing and Distance Ground Speed and Track.
Electrical Input voltage 10 VDC to 40 VDC, reverse polarity protected Input current (GPS navigation input) 500 mA typical, 750 mA max at 13.75 VDC 250 mA typical, 375 mA max at 27.5 VDC Input current (comm input - GX60/65 only) 270 mA typical, 2A max at 13.
Serial Interface 2 RS-232 for GX50/60/65 1 RS-232 for GX55 Physical Specifications Height: 2.0 inches (5.08 cm) Width: 6.25 inches (15.88 cm) Depth: 11.125 inches (28.26 cm) behind panel, including mounting frame and connectors Weight (with mounting frame): GX50 and GX55 - 2.
VHF Comm Receiver Performance Specifications (GX60/65) Class D Frequency range - 118.000 to 136.975 MHz, 760 channels Sensitivity 1 microvolt (2 microvolt hard) for 6 dB S+N/N 30% modulation at 1000 H.
Getting Started This section explains how to get started using your Apollo GX. Information in this section explains how to: · Select a waypoint · Store waypoints · Find a Nearest Waypoint · Fly Di.
2. The Waypoint Type will flash. Turn the SMALL knob to choose the Waypoint Type (Airport, VOR, NDB, INT, or USER). AIRPORT HIO PORTLAND city OR USA 3. Turn the LARGE knob to move the cursor (flashing character) to either the identifier or the city/facility name.
3. In this case we’ll keep the “A” as the second character. Turn the LARGE knob to the third character and then turn the SMALL knob to select an “L.” AIRPORT 09C KAL AMAZOO city dup MI USA 4. Now, press the SEL key. Note that the entire name “KALAMAZOO” flashes.
Duplicate Identifier, City, or Facility Names While performing Waypoint Identifier selection, you may see the word “dup” on the bottom line. This means that there is more than one waypoint for the displayed city or facility name. The same technique described above can be used to search for duplicate city and facility names.
Storing a Waypoint Your Apollo GX can store up to 500 user-defined waypoints in the USER database. The waypoint can be created by providing a Lat/Lon position or by a Radial and Distance from a reference waypoint. Then, you can give your waypoint a name and even include a runway length.
Finding a Nearest Waypoint When you press the NRST key, your Apollo GX will search for the nearest 20 waypoints within 600 nm for each waypoint type. You can also be selective about the runway length, lighting, and surface type. See Setting Runway Limits on page 12.
Flying Direct-To a Waypoint Pressing DIRECT-TO allows you to quickly make changes to your TO waypoint. When you press DIRECT-TO , the default waypoint shown will be the current TO waypoint in the Nav or Flight Plan functions or the waypoint displayed in the Database or Info functions.
Create a Flight Plan You can create up to 30 flight plans with up to 20 legs each. A flight plan name can have up to eight characters using upper case letters, numbers, or a space. 1. Press FPL . Turn the LARGE knob to reach the Create a New Flight Plan page.
5. The first flight plan leg page will be displayed. Press SEL to start inserting waypoints. ______ to ______ 1 Press SEL to Edit Leg 6. The Ins? prompt will flash. Press ENTER . This will take you to the waypoint database. Use the LARGE and SMALL knobs as described in the Select Waypoint section starting on page 1.
Using the Moving Map The Moving Map gives you a graphic presentation of your flight progress. You can select the type of waypoint displayed, a route line, ATC ring, airspace setup, type of airspace displayed, and map orientation. See the Moving Map section on page 1 for more details.
2-11 Getting Started Select (SEL) Direct-T o (D ) Enter (ENTER) Press SEL to edit information or to select options. Press ENTER to enter and save information. In the Comm function, ENTER saves the S tandby frequency . Press Direct-T o to define a direct course from your present position to a selected wa y point.
2-12 Getting Started Turn LARGE Knob to change MH z Turn SMAL L Knob to change kHz Press <-> to toggle Active & St andby Press MON to mo nitor S tandby Press MEM to me morize S tandby Press .
Navigation Basics This section explores the navigation function and describes the powerful features it contains. About the Navigation Function The navigation function is always active.
Autonav The Autonav feature lets you select certain Nav display choices and have them rotate in sequence displaying each one from one to nine seconds. The selection of displays and sequencing time is performed in the Nav Info part of the System Functions (see page 1).
Relative Bearing Indicator The Relative Bearing Indicator is an arrow next to the Bearing value that indicates an approximate bearing to a waypoint or airspace relative to the aircraft’s current track when your current ground speed is more than 5 knots.
Estimated Time En Route (Ete) ETE is to the current TO (destination) waypoint from your present position based on the current ground speed. The units shown are in hours and minutes, 00:00 to 99:59, and in seconds when less than one hour is displayed.
Course Deviation Indicator (CDI) and Distance Off Track The triangle symbol ( “ ) referenced to a bar graph shows your position relative to being on-course. When the bar graph is to the right of the triangle, you must fly right to return on-course. In the example below, the bar graph indicates you are off-course to the right.
If the GPS sensor is not sending a valid position, or the current TO waypoint is blank, the CDI will display “—Nav Flagged—”. TO/FROM Indicator The triangle symbol is also used as a TO-FROM indicator. When the triangle is facing up, you are on the “TO” side of the destination waypoint.
resolution, 100.0 to 999.9 km at 0.1 km resolution, and 1000 to 9999 km at 1 km resolution. See page 6 for details on changing units of measurement. Track (Trk) Angle Track Angle is the angle of your actual direction of travel. Track is shown as a positive value from 0 to 359 degrees in one degree increments.
ete aSLE 00:37 0.006 “ Ft01:23 137kts Minimum Safe Altitude (MSA) MSA is calculated by taking the Maximum Elevation Figure (MEF) from the sectional chart grid that corresponds to your current position. In areas below 3,000 feet, 1,000 feet is added.
database coverage area. In the example shown above, the MESA for the present position of the aircraft would be 16,800 ft. The mountainous terrain would add a 2,000 ft. buffer to the 14,800 ft. Maximum Elevation figure indicated from the sectional chart.
airport types you select, such as: runway length, lighting, and surface type. Press INFO while viewing a Nearest waypoint for more information about that waypoint.
2. The waypoint type will flash. Turn the SMALL knob to choose Airport, VOR, NDB, Intersection (INT) or User waypoint type. VOR PDX PORTLAND facil OR USA 3. Turn the LARGE knob to the waypoint identifier name. The first character of the identifier will flash.
Setting Runway Limits for Nearest Waypoints Narrow the type of airports that you will accept by choosing the runway length, lighting, and surface type.
4. Turn the LARGE knob to cause the runway surface type to flash. Turn the SMALL knob to choose from the Hard, Soft, or Water surface types. Soft refers to grass, dirt, or gravel runways. Choices include: Hard, Hard/Soft, and Hard/Soft/Water. Runway Limits HARD/SOFT Ft:3500 Lit:Yes 5.
1. Press the INFO key to view information about the airspace. Values for ceiling and floor may be any number of positive feet less than 100,000. Values may also be Unlimited, Ground, FL (Flight Level, followed by a number such as 050), Unknown, or NOTAM.
In the Nav function, turn the LARGE knob to view the Altitude Assist page. The diamond in the corner notes that turning the SMALL knob will show the Encoder Altitude, Auto Descent, End Altitude, and Hold Altitude, and Buffer values. Altitude Assist Local Altimeter Setting 29.
Setting Hold Altitude and Buffer The Hold Altitude is an altitude where you want to remain. The Buffer is the tolerance or range in altitude that you can move in vertically before a warning message is generated. 1. In the Nav function, turn the LARGE knob to the Hold Alt/Buffer page.
Auto Descent The Auto Descent feature allows you to input a desired End Altitude, an Offset Distance from a desired Auto Descent Waypoint from the Active flight plan, a desired Feet per Minute Descent rate, and an expected Ground speed.
Set up your Auto-Descent by selecting: · Distance from destination waypoint (0 - 99 nm) or Offset Distance · Ending altitude (-1,500 - 50,000’ in 50’ steps) · Descent rate (100 - 5,000’/min in 10’/min steps) · Estimated ground speed (50 - 600 kts) 1.
Parallel Track Offset This function allows you to create a parallel course offset to the left or right from your current flight plan from 0.1 to 20.0 nm. You must have FROM and TO waypoints defined. Parallel Track cannot be activated if you set a course using Direct-To.
1. In the Nav function, turn the LARGE knob to display Parallel Track. Parallel Track Offset: Standby RIGHT 12.4nm 2. Press SEL . The Offset field will flash. Two states are available: Use or Standby. If Parallel Track is in use, “Standby” will flash.
5. Turn the LARGE knob back to the “Offset” field. Press ENTER when the “Use?” prompt flashes to activate Parallel Track. A “p” will appear next to the waypoint identifier to indicate that Parallel Track is in use. The MSG annunciator will flash and a message will state that Parallel Track is in use.
Countdown Timer The Countdown Timer allows you to set a timer that will alert you when it expires with a flashing MSG annunciator. The maximum time is 99:59:59 (hours, minutes, seconds). The default time on power up is the previous time that was entered.
Arc Assist The Arc Assist function will help you to navigate along an arc. In the GX50/60, Arc Assist will help you fly approaches with DME Arcs. Arc Assist can be used as a user-defined arc to avoid special use airspaces, or for conducting aerial searches using increasingly larger circles.
2. Press SEL . Choose another waypoint using the LARGE and SMALL knobs. VOR CVO CORVALLIS facil OR USA 3. Select the Arc direction with the SMALL knob. Left Arc dtk 171 ref: CVO vor Rad 005° 14.0nm· Rght Arc dtk 351 ref: CVO vor Rad 005° 14.0nm 4. Press ENTER to accept the selections and start navigating.
Waypoint Distance Page This page shows the cumulative distance from your current position to each waypoint in the active flight plan starting with the active leg. Turn the SMALL knob to view the next set of waypoints in your active flight plan. The waypoint type is shown to the left of the identifier.
From/To/Next Waypoint The FROM/TO/NEXT Waypoint allows you to view and/or edit a three waypoint mini-flight plan, or view two legs of your flight plan, while within the Nav function. These waypoints are like a three waypoint window into your Active Flight Plan.
2. Press SEL to start editing. Turn the LARGE knob to select the FROM (first) waypoint position. Turn the SMALL knob, if necessary, so the flashing selection shows “Ins?” (Insert). Press ENTER . From Ins? To ______ Next ______ 3. The Waypoint Type will flash.
6. Turn the LARGE knob clockwise one click to move to the next character. Turn the SMALL knob to select the desired character. Continue to select the needed characters. AIRPORT EUG EUGENE city OR USA 7. Press ENTER when you have selected the desired waypoint.
C - Set the NEXT Waypoint 1. Press SEL and move to the NEXT waypoint with the LARGE knob. The insert (Ins?) choice will flash. Press ENTER and then select the NEXT waypoint as you did for the FROM and TO waypoints. From EUG arpt To SLE Next Ins? 2. After selecting a NEXT waypoint, press ENTER .
3. Turn the SMALL knob to choose the type of editing you want to do. The flashing selection will ask you to choose between Ins (Insert), Chg (Change), or Del (Delete). The TO waypoint can also be placed on Hold. Press ENTER when you have selected the editing option.
Using Direct-To Pressing the DIRECT-TO key sets your present position as the FROM location. When using the Direct-To function, the FROM waypoint identifier is overwritten with the word “Direct.” If you remove the Direct-To position with the Del? option, the old FROM waypoint is returned to that position.
Direct-To Operation 1. Press the DIRECT-TO key. The waypoint type will flash. AIRPORT HIO PORTLAND city OR USA 2. Select the new destination (TO) waypoint using the SMALL and LARGE knobs.
1. You flew to the right to avoid a storm cloud and your CDI tells you to fly left, but you still have the same TO waypoint. Press DIRECT-TO . Your current TO waypoint is displayed and the Waypoint Type will flash. AIRPORT SLE SALEM city OR USA 2. Press ENTER .
1. While on the first leg of your active flight plan, you find out that you need to make another stop on the way but you don’t want to change the rest of your plan. Press FPL . While viewing the Active flight plan, turn the SMALL knob to the first leg.
Direct-To OBS Pressing the DIRECT-TO key twice starts the OBS desired track editor. OBS Desired Track allows entry of a desired track to or from the current TO waypoint. The current desired track in the navigation pages will be replaced by the OBS Desired Track value entered.
4. Press ENTER when the choices are selected. Turn Anticipation The Apollo GX will provide information for you to smoothly transition from one flight plan leg to another. Turns are drawn on the moving map. You will receive a message about ten seconds before the turn.
Turn anticipation will not be available when sequencing is on Hold; for the MAP or MAHP of an approach; or for the “flyover” waypoints in an approach. Wind and Turn Anticipation The graphic Turn Anticipation curve drawn on the map display is based on your current ground speed.
Approach GPSS Operation When the autopilot is directed by GPSS, there are few considerations when flying an approach. · GPSS information will not be provided after you pass the MAP. You need to follow the directions published on the approach plate. · When directed to the MAHP, use the Direct-To function.
Tuned Station When your Apollo GX is connected to and configured to communicate with an Apollo SL30 Nav/Comm, your Apollo GX will provide information about the VOR or Localizer tuned by the SL30. The Apollo SL30 with SW version 1.2, or later, sends the Tuned Station information once every second.
Tuning to a Localizer When the connected SL30 is tuned to a Localizer frequency, the SL30 sends the decoded Localizer identifier to the Apollo GX. The Apollo GX searches its LOC-DME database for an identifier match.
Moving Map Functions Press the MAP key to reach the Moving Map function and view the progress of your flight on a graphic display. Your present position, nearby waypoints, and special use airspaces display options are user-selectable.
Controls The LARGE knob moves to different pages of the Map function and selects waypoints when scanning. The SMALL knob changes the map scale. Waypoint Type Keys The smart keys select the display of the waypoint types. The waypoint types selectable from the map view are: Airports, VORs, Intersections, User-defined, and NDBs.
Waypoint Scan Key The Waypoint Scan smart key allows you to select an airport to get information about while viewing the map. 1. Press the SCAN smart key. 2. Turn the LARGE knob to highlight the desired waypoint identifier. 3. Press INFO to get information about the waypoint.
Map Setup The map setup function allows you to select the route line, map orientation, waypoint types that will be displayed, airspace type, and special use airspaces, as well as what airspace alerts will appear when an airspace is penetrated. Route Line A Route Line can be drawn for the legs of the active route when the selection is turned on.
2. Turn the SMALL knob to choose On or Off. 3. Press ENTER when you made your selection, or turn the LARGE knob to the next item. Map Orient The Map Orient selection allows you to choose how the top of the map display is oriented. North Up - The display is oriented so that vertical lines on the map are aligned with magnetic north.
Map Reference The Map Reference selection allows you to choose either the Destination Waypoint (Dest) or your current position with an airplane icon (Plane) as the center point of the Moving Map display. 1. In the Map function, turn the LARGE knob to reach the Map Setup page.
Note Waypoints that are in an active flight plan will show up on the moving map even if its waypoint type is set as “Off.” 1. In the Map function, turn the LARGE knob to reach the Map Setup page. Turn the SMALL knob to the Identifier & Waypoint Type page.
Track History Your Apollo GX can store a record of its progress in memory that will be shown on the display. The Track History is shown as a series of points on the display following the path of the plane icon. Track history may be recorded by time or by distance at a selected interval.
Trk History:Off Save By:Distance Interval:0.5 2. Turn the SMALL knob to select On or Off. 3. Turn the LARGE knob to the Save By option. Turn the SMALL knob to choose Distance or Time. 4. Turn the LARGE knob to the Interval option. Turn the SMALL knob to choose the Interval value.
Airspace Setup The Airspace Setup selections allows you to turn Airspace notification (Alerts) or map display of Airspaces On or Off, select the distance and time buffers for airspace alerts, turn ATC rings On or Off, and to choose the Airspace types that will be used.
Airspace Buffers Three values may be adjusted for Airspace Buffers for determining CLOSE information: distance, elevation, and time. CLOSE distance may be from 0 to 99 nm at one nm intervals. Altitude values are from 0 to 9900 feet in 100 foot intervals.
ATC Ring Selection When this choice is turned ON ,a5n m radius artificial “ATC Ring” is drawn on the Map display around airports that have a control tower. From the Map Setup page, turn the SMALL knob four clicks cw to reach the ATC Ring selection page.
The Outer selection refers to the outline of the outside ring extended from the ground on up. Selecting Outer will be useful to VFR pilots who wish to avoid all airspaces. The sector selection refers to the outside edges of the sector from the ground on up unless you have altitude input which then allows for 3-dimensional information.
Search and Rescue When activated, the Search and Rescue (SAR) feature allows a simplified, automated method of performing search patterns. The search patterns supported include parallel line, creeping line, and expanding square. A line showing the route of the pattern may also be displayed on the screen of your GX.
Grid Line Display While viewing the Search and Rescue (SAR) map page, you can choose how the grid lines are displayed. Press the GRD smart key to change the Grid line view. Grid line selection options are slightly different for the two grid types, US and Basic.
Basic Grid Type GRD – No grid lines G R D1–6 0 minute grid lines G R D2–3 0 minute grid lines G R D3–1 5 minute grid lines Search and Rescue Map Setup Page The SAR Map Setup page provides selection of SAR Map (Off/On), Grid Type (US/Basic), and the Position (area of operation).
4. Turn the LARGE knob to Position. Turn the SMALL knob to choose the position information. If you selected the US Grid type, choose the desired sectional name with the SMALL knob or the POS smart key. See the following Sectional Aeronautical Chart Grids table for the location nearest you operation.
Set the SAR Position (Basic Grid Type) 1. If you selected the Basic Grid Type, you need to set the SAR Position. From the SAR Map Setup page turn the SMALL knob clockwise to the SAR Position page. The SAR Position page only appears when the Basic Grid Type is selected.
Sectional Aeronautical Chart Grids Chart Ident North Grid Limit South Grid Limit West Grid Limit East Grid Limit Total Grids Grids/ Row Seattle SEA 49 ° 00N 44 ° 30N 125 ° 00W 117 ° 00W 576 32 Gre.
Selecting A Pattern Three pattern types provide you with the ability to perform a search that best suits your needs. The three types include Parallel Line, Creeping Line, and Expanding Square. 1. While viewing the SAR Map page, press the PAT (Pattern) smart key.
Parallel Line Search Pattern The Parallel Line search pattern selection allows you to create a search pattern along parallel lines based on an established grid. · Select grid · Set spacing · Set direction · Activate pattern 1. While viewing the SAR Map page, press the PAT smart key.
4. Use the LARGE and SMALL knobs to select the desired Grid. 5. Turn the LARGE knob to the Spacing option. Turn the SMALL knob to select the desired pattern spacing. You may select between 0.2 and 9.9 nm. 6. Turn the LARGE knob to the Direction of Travel option.
Creeping Line Search Pattern The Creeping Line search pattern is similar to the Parallel Line Search. The starting point is any selected waypoint, rather than a designated grid based on aeronautical sectionals. The creeping line search pattern will straddle the center of your flight path.
3. Press SEL . The Starting Waypoint field will flash “INS?” (insert) or “CHG?” (change). Press ENTER to start editing the Starting Waypoint selection. Start: Ins? Spacing :1.0 Direction :000· 4. Choose a waypoint using normal selection methods.
9. Select the Leg Length. Press SEL to start editing the Leg Length. Turn the SMALL knob to choose the Leg Length. You may select between 1.0 and 9.9 nm. Leg Length:5.0 Start:RIGHT Side 10. Turn the LARGE knob to the Start Side selection. Turn the SMALL knob to choose Left or Right.
Expanding Square Search Pattern The Expanding Square search pattern is similar to the Creeping Line Search. Rather than parallel lines, an expanding square is radiated from the Starting Waypoint according to the spacing between lines and at an angle selected for the Direction of Travel.
3. Press SEL . The Starting Waypoint field will flash “INS?” (insert) or “CHG?” (change). Press ENTER to start editing the Starting Waypoint selection. Start: Ins? Spacing :5.0 Direction :000 4. Choose a waypoint using normal selection methods.
Mark A Position When viewing the SAR Map page you may save a User waypoint to Mark a location of interest. Pressing the MRK (Marker) smart key saves a User waypoint at the present position of the aircraft when you save the waypoint. 1. While viewing the SAR Map page, press MRK .
Create A User Waypoint By US Grid This feature allows you to set a US Grid coordinate, such as the corner of a grid, as a User waypoint so you can fly Direct-To the starting point in a grid for flying a search pattern. You must have selected the US Grid type on the SAR Setup page to have this display available.
Fly Direct To A US Grid After creating a User waypoint for a US Grid, you can fly Direct-To, or set a flight plan to, the starting corner of that grid to begin a search pattern. 1. Press DIRECT-TO . Turn the SMALL knob to choose the User waypoint type, if necessary.
If you want to fly to the Bravo-Charlie 3 corner of the 45°N and 123°W grid, you would define the corner as a USER waypoint with the name “53BC3.” The SAR position is set to 40°N and 120°W. The “5” comes from the 5° added to 40°N. The next number, “3”, comes from the 3° added to 120°W.
3. Press ENTER to save the displayed Grid location as a User waypoint. 53BC3 USER 44°30.00N 122°15.00W Fly Direct To A Basic Grid After creating a User waypoint for a Basic Grid, you can fly Direct-To, or set a flight plan to, the starting corner of that grid to begin a search pattern.
Waypoint Database Waypoint Information The Apollo GX provides an extensive built-in database of waypoint information to aid the navigator. Waypoints in the database are divided into 5 categories.
· Sunrise/Sunset times · Waypoint comment VOR Waypoint Information · Identifier, name, state, & country · Radial and distance from the VOR · Bearing and distance from present position · Map .
· Lat/Lon coordinates · Sunrise/sunset time · Waypoint comment USER Waypoint Information · Name/Identifier (User entered) · Lat/Lon coordinates (User entered) · Runway Length (User entered) · B.
3. Turn the LARGE knob to the first character of the waypoint name. The character will flash. Turn the SMALL knob to select the desired character. AIRPORT PAE EVERETT city WA USA 4. Turn the LARGE knob clockwise one click to move to the next character.
7. Press INFO to view information about the selected waypoint. AIRPORT TTD PORTLAND-TROUTDA city dup OR USA 9. Press ENTER or INFO to leave the function. Airport Info Pages The Apollo GX database holds the most needed information about each waypoint. The Airport information is described below.
Bearing & distance from present position Turn the SMALL knob to show the Bearing and Distance from your present position. An arrow shows the Relative Bearing to the waypoint from your present position. ppos to SLE Bearing 341°² Distance 121nm Airport frequencies Turn the SMALL knob to view the available frequencies for the waypoint.
Fuel Availability Turn the SMALL knob to view fuel availability. SLE AIRPORT Available Fuel: Avgas/Jet Map Turn the SMALL knob to view a map of the waypoint and location. If the waypoint is an airport, the runway map will be shown. You can change the map scale by pressing SEL and then turning the SMALL knob.
Approach Info (GX50/60 only) Turn the SMALL knob to view information about each approach. Lat/Lon Position Turn the SMALL knob to view the Lat/Lon position. SLE AIRPORT lat 44°54.57N lon 123°00.15W Sunrise/Sunset Time Turn the SMALL knob to view the Sunset/Sunrise time for the waypoint in UTC time.
Create User Waypoint by Lat/Lon The Apollo GX allows you to create up to 500 of your own waypoints to the waypoint database. You can create a waypoint based on a Lat/Lon or using a radial and distance from another waypoint. The starting Lat/Lon coordinates are your present position You can also add the runway length.
4. Press ENTER when you have finished entering the waypoint information. HOME USER 44°24.29N Rwlen 122°51.52W 3000’ Create User Waypoint by Radial/Distance A User waypoint may also be created where its position is referenced by a Radial and Distance from another waypoint.
SMALL knobs to choose the identifier. After the reference waypoint name is chosen, press ENTER . Ref Wpt: SLE 0 00.0° 000.0nm 5. The first character of the radial will flash. Now select the needed characters for the Radial and Distance. Turn the SMALL knob to change characters.
Update User Wpt with Present Pos Update the Lat/Lon coordinates of an existing User waypoint to your present position. You may also change the name and other info for the waypoint. 1. Press the DB key. 2. Turn the LARGE knob to view the “Update User Waypoint” page.
3. Press ENTER . The waypoint identifier will flash. Turn the SMALL knob to view the User waypoints. Find Wpt to Del CABIN user Press ENT 4. When the waypoint to delete is displayed, press ENTER . Modify User Waypoint 1. Press the DB key. Turn the LARGE knob to view the “Modify User Wpt” page, and then press ENTER .
5. Turn the SMALL knob to select the desired character. Continue using the SMALL knob to change characters and the LARGE knob to move to the desired character. After the correct characters are chosen, press ENTER . Creating Waypoint Comments You may add comments to up to 200 waypoints.
Deleting Waypoint Comments You may delete any of the waypoint comments that you have created. 1. Press DB and then turn the LARGE knob to the “Delete Waypoint Comment” page. Delete Waypoint Comment: 5 used Press ENT 2. Press ENTER to view the waypoint comments.
Update User Waypoint The Update User Waypoint function allows you to change the position of an existing User waypoint to your present position. 1. In the Database function, turn the LARGE knob to “Update User Wpt With Ppos.” Then, press ENTER . Update Usert Wpt With Ppos Press ENTER 2.
Flight Plan Functions Flight plans are specific routes between waypoints you may store in the Apollo GX memory. This information is used to calculate useful flight statistics. The Flight Plan function allows you to have up to 30 stored flight plans. Each flight plan may have up to 20 legs.
Flight Plan pages. The active leg is the default page you will see when pressing FPL once. *Active* 259nm Dest Wpt: PDT Active · 2. Turn the SMALL knob to view the individual legs of a flight plan. Two asterisks indicate the active leg. EUG to SLE 1** 353° 48.
1. Press the FPL key. Turn the LARGE knob to view the “Create a New Flightplan” page. Press SEL to Create a New Flight Plan 2. Press SEL . The first character will flash. Turn the SMALL knob to select the first flight plan name character. R_______ Enter a New Plan Name 3.
7. Press SEL to insert a FROM waypoint. The Ins? prompt will flash. Press ENTER to insert a FROM waypoint. Ins? to ______ 1 ___° __._nm ____ ____ 8. Turn the SMALL knob to select the waypoint type. Turn the LARGE knob to the waypoint identifier. Turn the SMALL knob to select the first character of the waypoint identifier.
11. Repeat steps 7-10 for the remaining waypoints in your flight plan. SLE to Ins? 2 ___° __._nm ____ ____ 12. Press SEL when your flight plan is complete. Turn the SMALL knob to view the legs in your flight plan. Press SEL while viewing a flight plan leg page to make changes.
Flight Plan Leg Information Two types of information are available within flight plan legs: waypoint and flight information. Pressing INFO will provide information about the destination waypoint. Information about the ETA, ETE, Ground Speed, and Fuel is also available for each leg by selecting which option you like to view in the leg display.
ETA Estimated Time of Arrival is for the displayed TO waypoint and requires an actual ground speed of more than 5 knots. If there is no valid ETA for the leg, dashes will replace the value. EUG to SLE 1 353° 48.0nm ETA 17:36 ETA? ETA? is the same as ETA, except the Estimated Ground Speed is used for the calculation.
no valid ETE for the leg, dashes will replace the value. EUG to SLE 1 353° 48.0nm ETE 00:27 ETE? ETE? is the same as ETE, except the Estimated Ground Speed is used for the calculation. See Estimated Ground Speed on page 16 for more details. EUG to SLE 1 353° 48.
Direct-To If the leg page displayed is the currently active leg of the Active flight plan, and a Direct-To waypoint has been entered, the From waypoint will say “Direct.” The leg just prior to the currently active leg displays the leg as if the “Direct” waypoint did not exist.
Flight Plan Editing You can alter any of the information you entered into the flight plans. The editing options include: Chg?, Ins?, and Del? · Chg? - An existing waypoint can be changed if at least one valid waypoint exists in the database.
Changing Existing Flight Plan Legs 1. In the Flight Plan function, turn the LARGE knob to a flight plan and then use the SMALL knob to display the leg of the plan that you want to edit. HIO to TTD 3 070° 23.0nm arpt arpt 2. Press SEL . The FROM waypoint will flash with the Chg? prompt.
2. Press SEL . The From waypoint will flash with the Ins? prompt. Turn the LARGE knob, if necessary, to the waypoint you want changed. HIO to Chg? 3 067° 75.0nm arpt arpt 3. If another option was last used, turn the SMALL knob to choose Ins?. HIO to Ins? 3 067° 75.
2. Press SEL . The From waypoint will flash with the Chg? prompt. Turn the LARGE knob to the waypoint you want changed. HIO to Chg? 3 070° 23.0nm arpt arpt 3. Turn the SMALL knob to choose Del?. HIO to Del? 3 070° 23.0nm arpt arpt 4. Press ENTER . The waypoint will be deleted.
Flight Plan Options In the Flight Plan function you may make changes to a flight plan. 1. In the Flight Plan function turn the LARGE knob to a flight plan name page. 2. Press SEL and then turn the SMALL knob to view the available functions. 3. Press ENTER to activate the option.
Rev Activate Pressing ENTER when the “Rev Activate” option is displayed copies the selected flight plan to the active plan in reverse waypoint order and starts it at leg 1.
Copy Plan Pressing ENTER when the “Copy Plan” option is displayed allows you to copy any existing plan into the current plan, overwriting all of the current plan’s waypoints. You may choose the active or any inactive flight plan. 1. While viewing the desired flight plan, press SEL and then turn the SMALL knob to the “Copy Plan?” option.
Clear Waypoints Pressing ENTER will delete all waypoints in the selected flight plan. The plan name will remain. Route 2 259nm Dest: Wpt: PDT Clear Wpts? Reverse Flight Plan Pressing ENTER when the “Reverse” option is displayed reverses all the waypoints in the current flight plan.
plan or “Fuel To Uses Est Gr Speed” when the current flight plan is an inactive, stored flight plan. Delete Plan Pressing ENTER when the “Delete Plan” option is displayed deletes the current flight plan. The display returns to the previous flight plan’s name (or first) page.
3. Press ENTER to place the active flight plan on hold. Waypoint sequencing will be inhibited on the current leg. Pressing OBS/HLD will also work. *Active* 259nm Dest: Wpt: PDT Holding Holding Pattern.
selected inbound course and through the waypoint. The CDI will indicate “fly-left” if the aircraft is to the right of the desired track with reference to the selected inbound course. The CDI will indicate “fly-right” if the aircraft is to the left of the desired track with reference to the selected inbound course.
with 020° inbound selected as the “OBS” course to UBG. Continue The Continue option is available for the Active flight plan when the flight plan status is Holding (waypoint sequencing is not allowed). Pressing ENTER when this option is displayed restarts the Active flight plan and enables waypoint sequencing.
3. Press ENTER to continue the active flight plan. Waypoint sequencing will be enabled. *Active* 259nm Dest: Wpt: PDT Active · Load Approach (GX50/60 Only) This option is available for the Active flight plan when a datacard with approach information is inserted into the GX50/60.
Enable Approach (GX50/60 Only) This option is available on the Flight Plan home page when an approach is already loaded, but not enabled, and you are within approximately 30 nm of the destination airport. Press ENTER to enable the approach. *Active* 56.
1. While viewing the desired flight plan, press INFO . Turn the SMALL knob to reach the Comment page. Waypoint Comment Press SEL 3. Press SEL . Turn the SMALL knob to select the first character. _ 4. Turn the LARGE knob clockwise one click to move to the next character position.
2. Press SEL and then use the LARGE and SMALL knobs to enter a new plan name. After entering the name, press ENTER . PLAN 9__ Enter a New Plan Name 3. Press ENTER a second time or turn the SMALL knob twice to return to the Inactive Flight Plan name page.
An old navigation method 1. While holding your watch horizontal, point the hour hand at the sun. 2. Halfway between the hour hand and 12:00 is south. Don’t always depend on this method, but it is kind of fun.
System Functions Pressing the SYS key allows you to access the System functions. After pressing the SYS key, turn the LARGE knob to view the available functions: Navigation Info, System Info, Position Sensors, Misc Sensors, and Comm Info (GX60/65 only).
1. While viewing the Autonav Time page, press SEL . Autonav Time: 4 Seconds/Page 2. Turn the SMALL knob to select the delay time. Autonav Time: 7 Seconds/Page 3. Press ENTER when finished. 4. Press NAV . While viewing the Nav functions, Press ENTER to start Autonav scrolling.
4. Press SEL to activate editing. The first Nav field will flash. ete SLE 00:20 2.00 “¼¼ Dtk 353 48.0nm 5. Turn the SMALL knob to select the desired Nav information to be displayed in that field. GroundSp 100 kts 2.00 “¼¼ Dtk 353 48.0nm 6. Turn the LARGE knob to move to the next field to edit.
Selecting Autonav Pages 1. While you are viewing a Nav page information page, press SEL and then ENTER . See page 5 for a listing of Nav Page choices. 2. You will be prompted to decide if you want to include this page in the Autonav scrolling. Turn the SMALL knob to choose between Yes and No.
Nav Page Choices The following displays are available when customizing your Nav displays. Page references are shown in parentheses. Ete aUAO 02:27 Estimated Time En Route to TO 4wpt () Eta aUAO 00:02 .
Setting Units of Measurement Nav displays that show distance may be selected to show either nautical miles, statute miles, or kilometers. 1. In the Navigation section of the System function, turn the LARGE knob to the Nav Mode Display Pages. Nav Mode Display Programmable and Autonav Pages · 2.
Magnetic Variation Automatic or Manual Magnetic Variation can be set in this page. Automatic is the default setting on power-up, unless the database is invalid.
Flight Timer Trigger The following procedure is used to edit the flight timer trigger speed. The flight timer may be set to start at power-up, or when the ground speed exceeds from 10 to 500 knots. The default (factory) setting is 60 knots. The feature may also be turned off.
With the May Clear Direct-To Entry Option, the Direct-To waypoint will be inserted in the Active flight plan, and all of the other waypoints will be deleted from the Active flight plan, including approaches. With the Never Clears Direct-To option, the Direct-To waypoint is inserted before the current TO waypoint.
CDI Scaling The CDI Scaling option allows you to select manual or automatic full scale deflection of the internal CDI. Manual full scale deflection options include: 0.
System Information The System Information area provides the following pages: Software and Database Version, Display test, Owner Info, and Date and Time, . Date and Time 1. Press the SYS key. Turn the LARGE knob to reach the System Information function and press ENTER .
5. Turn the LARGE knob to move to the Month value. Turn the SMALL knob to choose the month. Date: 24 APR 97 Time: 23:24 UTC SEL to Reset 6. Turn the LARGE knob to move to the Year value. Turn the SMALL knob to choose the year. Date: 24 APR 97 Time: 23:24 UTC SEL to Reset 7.
2. Turn the SMALL knob cw one click to view the Database Version page. Americas DB Expires mm/dd/yy Version: x.xx 3. Turn the SMALL knob cw one click to view the GPS Software Version page. GPS Sensor SW Version x.x PN:123456789 Fuel Measure Units (GX50/60 Only) The GX50/60 allows you to choose the units of measure for your fuel displays.
Barometric Measure Units (GX50/60 Only) This function allows you to choose the units of measure for the Local Altimeter Settings. The choices are inches (“) or millibars (MB). 1. In the System Information section of the System function, turn the LARGE knob to reach the Baro Measure page.
2. Turn the SMALL knob to choose Default, High, or Low. Press ENTER to store the desired choice. Your choice is kept until you change it. Viewing Owner Information The Owner Information function allows the user to enter their Name, Address, City, Phone, and Aircraft.
Editing Owner Information It is necessary to enter a password before editing owner information. Editing is then enabled until the unit is turned off. 1. Start editing by pressing SEL . User Must First Enter Password.. 2. The password entry page is then ready.
5. Turn the SMALL knob to go to the next Owner Information page you want to edit. Press SEL to start editing. Select the characters with the SMALL knob and move to the next character to the right by turning the LARGE knob cw. Press ENTER to save the information.
3. Turn the SMALL knob to view the GPS Satellites Used for Position fixes page. SV means space vehicle, which is the same as a GPS satellite in this case. GPS SVs for Fix 28, 31, 27, 26, 19, 07, 02, 18 4. Turn the SMALL knob again to view the GPS Satellite Status, Elevation, SNR, and Azimuth page.
GPS Date and Time Page In the GPS Sensor Information function, turn the SMALL knob to view the GPS Date and Time page. This page is not shown when using the Simulator. GPS Time (UTC) May 24, 1997 17:54:27 GPS Normal Reset Page Resetting the GPS receiver resends current time, date, and position to the GPS receiver.
Miscellaneou s Sensors The Miscellaneous Sensor section of the System function displays information concerning the Fuel/Air Data Sensor (F/ADS), fuel sensor, and altitude encoder when they are installed. The F/ADS includes a fuel sensor and altitude encoder.
Air Data Info If the Air Data Sensor is installed, the following information is available. Air Speed True Airspeed - speed of the aircraft relative to the surrounding air speed. Indicated Air Speed - Speed of the aircraft as shown on the airspeed indicator.
Wind Direction and Speed True Wind Direction, Magnetic Wind Direction, and the outside Wind Speed are displayed. Wind Dir 000°Tru Wind Dir 342°Mag Wind Spd 15kts Fuel Info An installed Fuel Data Sensor will provide the following information.
Right Engine Fuel · Burn rate for the right engine in fuel units per hour · Amount of fuel used by the right engine since power up Right Engine Burn 17.7usg/hr Used 11usg Left Engine Fuel · Burn rate for the leftt engine in fuel units per hour · Amount of fuel used by the left engine since power up Left Engine Burn 16.
Fuel Measure The GX50/60 allows you to choose the units of measure for your fuel displays. Fuel units may be displayed as US Gallons (USG), Imperial Gallons (IMG), Liters (L), Pounds (LBS), or Kilos (KGS). Fuel Measure usg US Gallons Press SEL to enable selection.
Message Function Message function is responsible for warning the user of changing conditions which require immediate attention. Press the MSG smart key to view the message.
While any old message exists, the MSG annunciator remains steadily on at all times unless new messages arrive or all old message conditions go away. The home page in message mode is the first new message, if one exists, or the New Message Summary page if no new messages exist.
Messages The following is a summary of the conditions that cause a message warning, and examples of the messages generated for each condition. Special Use Airspace Messages Following is a list of the types of airspace messages which can be generated. All of the airspace messages become old messages after they are viewed.
CLOSE Altitude This condition occurs when the airspace boundary is within 500 feet, or a user-selected limit in the System function. Within 500’ of NORTON AFB Class C INSIDE This condition occurs when the plane penetrates the airspace.
GPS Sensor Lat/Lon Failure When the GPS sensor cannot compute the latitude and longitude, the following message displays. It becomes an old message after viewing. GPS Position Sensor Cannot Compute Lat/Lon GPS RAIM Not Available When RAIM detection is not available for the GPS sensor, a warning is generated.
GPS Communications Failure GPS HDOP Position Error When the HDOP for the GPS sensor exceeds current flight phase HDOP requirements, a warning is generated and Nav data will be flagged as invalid. The current flight phase is displayed first (either Terminal or En route).
Set Barometer (GX50/60 Only) When an approach is enabled, you are prompted to enter the local altimeter setting. Enter Local Altimeter Setting 29.92in No Valid Altitude Input for Approach (GX50/60 Only) An approach is not valid unless an altitude value is available.
Altitude Range Error When the altitude encoder reports an altitude that is out of range, the following message is created. Altitude Out of Range Altitude Encoder Communications Failure This message appears when communications fail between the Apollo GX and the altitude encoder.
Outside Hold Altitude Buffer You have gone above or below the selected Hold Altitude Buffer. Altitude Alert 500ft Above Hold Altitude Start Auto Descent Begin Descent To NOONS 500ft/min 130kts Arrival.
Apollo GX with F/ADS Wind Info Arrival: SLE Next DTK 321° Desired Hdg 324° In addition to the arrival waypoint identifier, the next leg’s desired track is shown when available; otherwise, it is dashed.
Holding at the TO Waypoint This form of the Arrival Alert is provided when holding at the current TO waypoint. Arrival: SLE - Holding - Next Leg is DME Arc This type of Arrival Alert is provided when the next TO waypoint is the end of a DME Arc holding at the current TO waypoint.
DME Arc Sequence (GX50/60 Only) This form of Sequence Alert is provided when the next TO waypoint is the end of a DME Arc in a nonprecision approach. Press ENTER to transition directly to the NAV mode DME Arc Assist page.
User Memory Failure This message indicates that one or more user settings were not within valid limits at power-up and needed to be reset. This message is cleared after the message is viewed. Memory Failure User Setups Have Been Reset Database Expired This message indicates that the datacard expiration date is before the current UTC date.
Low Internal Battery Voltage This message is generated when low internal battery voltage is detected. It becomes an old message after being viewed. Battery voltage is checked every 15 seconds. This battery backs up the memory for information added by the user, such as user waypoints and stored flight plans.
Approach Basics (GX50/60) The Apollo GX50/60 may be used to navigate GPS non-precision approaches. These consist of overlay approaches, GPS approaches which overlay an existing non-precision approach procedure such as a VOR, an RNAV, or an NDB approach, and GPS-only approaches.
Approach Transition Approach Transition operations occur after you enable approach operation. The APPRCH annunciator will turn on. The CDI sensitivity will gradually scale from 5.0 to 1.0 nm full scale per side automatically. The IAF is usually in the Approach Transition operation area.
CAUTION The Apollo GX and the U.S. GPS Satellites use the World Geodetic System 1984 (WGS-84) horizontal datum for latitudes and longitudes. Approach plate or approach procedure data must be referenced to the WGS-84 or North American Datum 1983 (NAD-83) in order to use the approach.
9-4 Approach Basics (GX50/60).
Approach Procedure There are three general types of Apollo GX operation: · En Route ü Load Destination Waypoint ü Load Approach Information · Approach Transition (or Approach Enabled) ü Enable ap.
Load a Destination Airport The destination must be an airport. 1. Load your flight plan. You may activate or edit an existing flight plan. Press the FPL key to reach FLIGHT PLAN mode. If the desired flight plan is active, go to the next section “Load Approach Information.
Load Approach Information 1. When a flight plan is active, press SEL while in the Nav function or the Moving Map to go directly to this display. In the Flight Plan function with the active flight plan displayed, press SEL to reach the “Load Approach?” selection.
Approach Transition Operation (Enabling Approach) Approach Transition Operation begins when you enable an approach that has already been selected from the database and loaded into the active flight plan.
the FAF if the approach has not yet been enabled. You will then get a message to enter the local altimeter setting. Enable Approach - Method 2 When an approach has been loaded, the aircraft is less than 30 nm from the destination airport, and the approach has not yet been enabled, pressing FPL will result in the “Enable Approach?” prompt.
Initial Approach Fix (IAF) 1. Prior to the Initial Approach Fix (IAF), the MSG indicator will light to announce a Waypoint Arrival Alert. Press MSG to acknowledge the message and view the instructions to the next approach point. 2. Press MSG to return to the previous function.
Approach Active Operation Approach Active Operation begins when you cross the Final Approach Fix (FAF) inbound if an approach has been loaded and enabled, the FAF is the active waypoint, and there are no system-detected reasons not to continue the approach (see Message Mode starting on page 1 ).
Canceling the Approach will result in returning to Approach Transition operation. The Approach Active light will go out and the CDI will smoothly scale back to 1.0 nm sensitivity. Once Approach Active has been canceled by the pilot, it cannot be made active again except by again crossing the FAF inbound.
2. The OBS/HLD annunciator will remain lighted solid. CDI resolution is maintained at 0.3 nm. The To/From flag will switch from “TO” to “FROM” as you cross the MAP. 3. If desired, and conditions allow, land the aircraft. 4. If you do not choose to land, cancel the approach by pressing the OBS/HLD button.
approach. You will now return to Approach Transition mode. The Approach Active light will go out and the CDI will gradually go back to Approach Transition CDI sensitivity (from 0.3 nm to 1.0 nm full-scale). As soon as you enable sequencing, the Apollo GX will sequence to the next waypoint in the flight plan.
OBS DTK: 151° to ROARK iaf man brg 356 dtk 356 6. If you do not wish to hold or execute a procedure turn at the next waypoint, press OBS/HLD to enable sequencing at the active waypoint. You may also want to manually select a flight plan leg to intercept.
leg or waypoint and navigate to try the approach again. Your flight plan remains unchanged. Note After an active approach has been canceled, you cannot immediately reactivate it. The approach can only be reactivated by crossing the FAF inbound, when the FAF is the active waypoint.
OBS DTK 159° UBG iaf auto brg 159 dtk 159 Note If you wish to intercept an approach leg, manually activate that leg. This is useful when receiving radar vectors back to intercept an approach leg. See “Manually Selecting a Flight Plan Leg” on page 19.
Direct-To The Direct-To function is used for several purposes. Especially during approach operations, you should be very comfortable with how this feature works. Review the Direct-To section on page 31 if you need a refresher before proceeding with approaches.
suspends leg-sequencing at that waypoint and lights the OBS/HLD annunciator. Subsequent pressing of DIRECT-TO toggles between the waypoint selection and OBS DTK choices. Manually Selecting a Flight plan Leg Approach operations often result in the need to manually select a leg of the active flight plan.
Flight Plan Waypoint Sequencing A flight plan will sequence to the next leg of the flight plan as the aircraft crosses to the bisector that runs through the “TO” waypoint. The bisector is defined as the angle that is half of the angle between the current leg and the next leg.
Procedure Turns A procedure turn is a way of crossing the same waypoint more than once in order to accomplish a course reversal. First, make sure that flight plan leg sequencing is suspended. Second, after crossing the waypoint, set the correct inbound course to intercept.
2. Set the desired inbound course with the LARGE and SMALL knobs. Then, press ENTER . OBS DTK: 000° to BTG ifaf auto brg 000 dtk 000 3. Verify that waypoint sequencing is set to “auto.” 4. Fly the procedure-turn or course reversal and intercept the selected inbound course.
are less than 2 nm from the FAF when you enable sequencing, then transition to Approach Active, i.e., the CDI sensitivity will begin changing to 0.3 nm full-scale deflection immediately. The approach annunciator will begin flashing immediately if all the conditions exist to allow the approach to go to the active condition (RAIM available, etc.
Holding Patterns A holding pattern is operationally the same as a procedure turn except that you usually intend to make repeated crossings of the waypoint on a specific inbound course. Like the procedure turn, the steps will always be: · First, suspend sequencing · Second, set the inbound course.
4. Finally, when you are ready to exit the holding pattern, press OBS/HLD . Caution While flying outbound, your CDI will provide reverse sensing. Holding at the FAF Holding at the FAF is different from other holding patterns. You must be inbound and have sequencing enabled to allow proper transition to Approach Active at the FAF.
DME Arcs (Arc Assist) DME-Arcs are usually used as a method for pilots to intercept a flight plan leg, or a course to a fix. They are sometimes used as a method for reaching a subsequent fix such as a missed approach holding waypoint. The Apollo GX automates your DME-Arc procedure.
Note The desired track shown on an Arc Assist page is relative to the arc, not to the flight plan legs. The DME-Arc is always perpendicular to the present radial and it shows the desired track at the current radial if the aircraft was on the arc. It is the desired no-wind heading if established on the arc.
3. The Course Intercept alert will appear as you become established inbound on the final approach course. Course Intercept Next Dtk 312° Navigating to a DME The Apollo GX may be used to help guide you to near the start of an ILS approach by using the location of a DME as a destination waypoint.
RAIM RAIM stands for Receiver Autonomous Integrity Monitor. It is a way a GPS receiver can verify when the signals it is receiving from one or more of the satellites are useable. It does this by using more satellites than are required for a position solution.
to predict whether RAIM will be available at the estimated time of arrival at the destination. Your Apollo GX provides you with a RAIM prediction page.
En Route RAIM, or a 2.0 nm alarm limit is provided at all other times. Note that the three different equipment operation states: En route, Approach-Transition, and Approach-Active are somewhat but not directly related to the three RAIM alarm limits of En route, Terminal, and Approach.
navigation as long as you verify the accuracy of your position by other means at least every 15 minutes until RAIM becomes available again. This can be accomplished by cross-checking your GPS position against that of other navigation instruments.
directly from that satellite’s transmissions. An integrity monitor, such as RAIM when it is available, protects you from false or misleading navigation displays resulting from bad satellite information. RAIM Nav Page (GX50/60 Only) The Apollo GX50/60 allows you to manage your RAIM prediction process, besides allowing for automatic prediction.
4. Press SEL . The “Predict RAIM?” choice will flash. Press ENTER to perform manual RAIM prediction now. The top line will display the result of the calculation of whether RAIM is available or not available.
Clearing the Exclusion List You can also easily clear the Exclusion List. 1. While viewing the RAIM home page, press SEL . The “Predict RAIM?” choice will flash. Turn the SMALL knob to the “CLR Ignore List?” option. Clr Ignore List? at: SLE arpt 10Nov97 22:06 · 2.
Fly Direct-To a Nearest Airport 1. Press the NRST key. Turn the SMALL knob to choose the nearest desired airport. Near 1 to PPos CVO AIRPORT Brg 154°± 5.4nm 2. Press DIRECT-TO . Press ENTER . You have now set a Direct-To course. AIRPORT CVO CORVALLIS city OR USA Set New Approach 1.
Approach Examples This section expands on the previous Approach Basics section. A variety of the situations that you may encounter while using approaches is included in this section. Use this section to familiarize yourself with the procedures that you expect to use in normal flight operations.
Reproduced with permission of JeppesenSanderson Inc. Reduced for illustrative purposes. 9-38 Approach Examples.
Approach Example 1 - Straight In This example illustrates the approach to Nampa, Idaho. This example was selected because it is a new approach designed especially for TSO C-129 GPS equipment. It is probably as simple an approach to fly with the Apollo GX as there is.
Illustration Points A - Between EMETT (IAF) and PARMO (APPR) B - Between PARMO (APPR) and DEFKI (FAF) C - Between DEFKI (FAF) and RW11 (MAP) D - Between RW11 (MAP) and NEMEW (MAHP) E - In Holding Pattern En Route Load and activate your flight plan, then load the approach.
2. The Approach Active annunciator will begin flashing 3 nm from DEFKI (FAF) indicating that approach RAIM prediction is beginning. The transition to approach active is starting. 3. At 2 nm from DEFKI the CDI scale will begin changing from 1 nm to 0.3 nm full scale deflection.
9-42 Approach Examples.
Reproduced with permission of JeppesenSanderson Inc. Reduced for illustrative purposes. 9-43 Approach Examples.
Approach Example 2 - Holding at IFAF This example uses an active flight plan ending at the Medford, Oregon airport (MFR). The last two waypoints in this example are the Klamath Falls, Oregon VOR (LMT) and the Medford airport. This approach example involves a procedure turn, a combined IAF and FAF (IFAF), and a MAHP holding pattern at the FAF.
En route to Medford (MFR) 1. Create a flight plan named “Example 2” with the last two waypoints as the Klamath Falls VOR (LMT) and the Medford airport (MFR). 2. Activate the flight plan. Press FPL . Turn the LARGE knob to display the “Example 2” flight plan.
Point A (Inbound to OED from the east) 1. Flight plan sequencing at OED is disabled because it is an IFAF in preparation for a procedure turn. The combined IAF/FAF waypoint is noted on your Apollo GX as IFAF. 2. Verify that the Hold annunciator is ON.
Point D (Inbound to OED) 1. As you intercept the 162 inbound a course intercept alert is given. Sequencing is automatically enabled. Turn to intercept the desired course. At 3 nm inbound to OED, the Approach Active annunciator will begin flashing to indicate that approach RAIM prediction is beginning.
3. Because OED is the MAHP, it is automatically a Hold waypoint and flight plan sequencing is suspended. Verify that the OBS/HLD annunciator is lighted. Point G (At the MAHP) 1. Upon crossing OED, press ENTER when prompted to set the inbound holding course (153°).
Reproduced with permission of JeppesenSanderson Inc. Reduced for illustrative purposes. 9-49 Approach Examples.
9-50 Approach Examples.
Approach Example 3 - Missed Approach This approach example describes an NDB approach from PARMO (IAF) to the Boise, Idaho airport (BOI). This example was chosen primarily because of the unusual published missed approach instructions and to illustrate how to navigate this missed approach with the Apollo GX.
3. Load the NDB approach to BOI. In flight plan mode active plan or Nav mode home page, press SEL . The display will flash “Load Approach?” Press ENTER . Select “NDB 10R:PARMO” with the SMALL knob and press ENTER . 30 nm from Boise (BOI) 1. At 30 nm from your destination, the MSG annunciator will light.
2. Now press DIRECT-TO twice. Turn the LARGE knob to reach the reference waypoint. Turn the SMALL knob to select BO. OBS DTK: 150° to BO mahp man brg 162 dtk 162 3. Turn the LARGE knob to select the OBS course. Select 105° with the SMALL knob as the desired inbound course.
Reproduced with permission of JeppesenSanderson Inc. Reduced for illustrative purposes. 9-54 Approach Examples.
9-55 Approach Examples.
Approach Example 4 - VOR Reference This example for the VORDME A:MUGGZ approach uses a flight plan with the last two waypoints as VOR IMB (Kimberly, Oregon) to The Dalles, Oregon (DLS).
En Route 1. Create a flight plan named “Example4” with Kimberly VOR (IMB) as the last waypoint before The Dalles, Oregon (DLS) as the destination airport. 2. Activate the flight plan. Press FPL . Turn the LARGE knob to display the “Example4” flight plan.
2. If the reference VOR is LTJ, press ENTER .I ft h e reference is not LTJ, press SEL and select the LTJ VOR with the LARGE and SMALL knobs and then press ENTER . The Apollo GX will automatically provide guidance with the Arc Assist and Map pages. Arc Assist Ref: LTJ vor Press ENTER/SEL 3.
Point C - Inbound between D1850 (ARC) and CF005 (APPR) 1. Flight plan sequencing will operate automatically for each of the remaining waypoints. You will receive arrival and next DTK messages as you cross each waypoint. Press MSG to view the message. Press MSG again to return to the previous display.
Point F - Turning to intercept 165° to MUGGZ (MAHP) 1. When you reach the Missed Approach Point and you wish to fly the published Missed Approach procedure, press OBS/HLD to reactivate waypoint sequencing as you start your climbing right turn. 2. Press DIRECT-TO twice and set the outbound course to 165°.
Manual Flight Plan Leg Selection Example You are flying a section of an active flight plan from SLE to BTG to OLM. As you approach the Portland area, you are given Radar vectors to the West of your course. ATC then tells you: “Fly heading 360, resume own navigation, intercept V287 to OLM, then as filed.
Manually select the leg from BTG to OLM (which is V287). Even though you have not yet reached BTG, you will know when you have intercepted this course. 1. Press FPL twice to reach the active plan in Flight Plan Mode. This example uses a flight plan from the Salem (SLE) airport to the Battle Ground (BTG) VOR and then to the Olympia (OLM) VOR.
Approach Example 5 - DME Arc The following example describes the process for intercepting and flying a DME-Arc. This example uses a flight plan from Klamath Falls (LMT) to Medford (MFR) and will navigate along the VOR DME Runway 14 approach. You may also use Ashland (S03) to make your flight a little quicker.
2. Some approaches use additional intermediate waypoints not listed on the approach selection page, but are shown as small squares. Press INFO to view all waypoints in the approach. Turn the SMALL knob as necessary to view additional waypoints. Press INFO again to return to the previous page.
Left Arc dtk 245 ref: OED vor Rad 335° 16.4nm· 3. Follow the Moving Map or Arc Assist page information to fly the arc. 4. Flight plan waypoint sequencing will operate normally. Note When intercepting and flying DME-ARCs, autopilots may be used only in the heading mode.
Approach Example 6 - Procedure Turn 1 This example uses a flight plan from Roseburg, OR (5S1) to Medford, OR (MFR) to demonstrate how to recover when you overshoot the point where you need to place sequencing on hold (Point B).
1. Point A - At 30 nm west of the MFR airport, you will be prompted to “Enable Approach.” As the current Track Angle is less than 70° to the FAF-MAP leg, sequencing is not suspended. 2. As you cross over the OED VOR (IAF) at point E, the unit will sequence to MA14, because sequencing was not suspended prior to OED.
Approach Example 7 - Procedure Turn 2 For this example, use the VOR or GPS-B approach for Wenatchee, Washington. You will start the approach using the CASHS transition. The example involves a procedure turn at the FAF that is not also the IAF. Illustration Points Point A - Between CASHS and EAT.
3. Point C - You will be prompted to enter the OBS DTK when you near the FAF. Select an OBS setting of 285° with the LARGE and SMALL knobs and then press ENTER to select an inbound course. Note that the CDI will be “reverse-sensing” just as it would when outbound from a VOR with the OBS set to the inbound course.
The following examples of typical approaches illustrate where the LOC-DME waypoint may be useful. In addition, examples using DME information from VOR waypoints are given. ILS with DME Data from ILS DME Antenna The following example uses the ILS Rwy 10L approach to Portland International airport.
The Apollo GPS CDI may not be aligned with the approach course, only the Nav receiver may be used for course guidance. 3. Press NAV on the Apollo GPS to display distance. Note the distance to the IVDG DME to identify the intersections TRAYL (D9.1 IVDG), BLAZR (D5.
ILS DME with DME Data from Two VORs on the Field This example uses the ILS DME approach to Rwy 21 at Flagstaff, Arizona. The DME is co-located with the VOR. 1. Before commencing the approach, press DIRECT-TO . Select the Flagstaff (vFLG) VOR/DME waypoint using the LARGE and SMALL knobs, and then press ENTER .
The Apollo GPS CDI may not be aligned with the approach course, if the magnetic variation has changed since the VOR station was commissioned. Only the Nav receiver may be used for course guidance. 3. Press NAV on the GPS to display distance. Use your Apollo GPS for distance information to identify the REENY (IAF) intersection at D20.
identify FORRS (D13.0), CERAB (D18.0), and the missed approach point (D23.0). DME Arc Example The following example uses Baltimore’s VOR DME 15 to demonstrate the approach to Martin State Airport. The approach uses a 14.7 DME clockwise arc to guide the aircraft to Runway 15.
just plant your right wing on the bearing to BAL as displayed by the GPS and hold the arc. If the distance drifts lower than 14.7, widen the turn a few degrees by turning left. If the distance drifts higher than 14.7, tighten the turn a few degrees by turning right.
Notes 9-76 Approach Examples.
Approach Notes Waypoints The database waypoints which describe the TSO C129a GPS approaches correspond with the waypoints which appear on the approach procedure charts whenever possible. VORs, NDBs, and named Intersections will appear in the approach sequence as they are on the charts.
underlying approach. There are many GPS overlay approaches, such as the VOR or GPS-B approach to Wenatchee Washington, where there is no FAF inbound. The EAT VOR is the Initial Approach Fix (IAF), Final Approach Fix (FAF), Missed Approach Point (MAP), and Missed Approach Holding Point (MAHP).
Reproduced with permission of JeppesenSanderson Inc. Reduced for illustrative purposes. 9-79 Approach Notes.
Another type of waypoint which will have a name in your Apollo GX database, but may or may not appear on your approach procedure chart is an IAF waypoint defined as a radial and distance from a VOR. An example would be the VOR DME RWY 4 approach to North Bend, Oregon.
Charts have been reduced for illustrative purposes. 9-81 Approach Notes.
There are several other types of waypoints which may appear in your Apollo GX loaded approach and which may or may not appear on your approach procedure charts. Following is a brief description of these types of waypoints and the naming convention followed.
or course reversal is required - this usually depends on the direction of flight). MAP Missed Approach Point MAHP Missed Approach Holding Point ARC A DME arc terminator. The preceding flight plan leg is described as an arc to this waypoint. An ARC waypoint may follow another ARC waypoint.
The following legs replace the BKE airport in the flight plan and describe the approach sequence. D272Y TO D297Y 3* 018° 10.8nm iaf arc D297Y to D297O 4* 118° 10.0nm arc appr D297O to CF12 5* 119° 5.0nm appr appr CF12 to FF12 6* 120° 6.0nm appr faf FF12 to MA12 7* 120° 6.
Reduced for illustrative purposes. 9-85 Approach Notes.
Charts have been reduced for illustrative purposes. 9-86 Approach Notes.
Naming Conventions When a name must be provided for an otherwise unnamed waypoint, the naming will use the ARINC-424, chapter 7 specified convention whenever possible.
it; therefore, it would appear in the database as “GNB” at the second airport. Standard Naming Conventions In general, the following codes are used to correspond to a waypoint type. When they are associated with an approach to a specific runway, the runway is appended.
Unnamed turn points, intersections, and bearing/distance waypoints: Idents for unnamed turn points, intersections, or bearing/distance waypoints (other than VHF navaid distance/bearing), that are not coincidental with named waypoints, are constructed by using the ident of the nearest navaid together with the distance (rounded to whole miles).
Note Jeppesen Approach Procedure Charts identify Phase-2 overlay approaches by printing GPS contained in parenthesis, (GPS) along with the procedure name. Phase III GPS Approaches Phase III GPS approaches must contain GPS in the title of the GPS procedure such as VOR or GPS RWY 24.
Comm Radio Operation This section introduces the basic operating details of the VHF Communications Transceiver portion of the Apollo GX60/65. The Comm information is displayed in the bottom row of the display: Active (A) and Standby (S) frequencies. The Active (A) indicator changes to “Tx” when you are transmitting.
Selecting Frequencies New frequencies are first selected as a Standby frequency and then toggled to the Active side when desired. While viewing the frequency display, use the LARGE and SMALL knobs on the right side of the GX60/65 to select the desired frequency.
Comm Mode Map Display The first page of the Map mode includes the moving map, TO waypoint, range to the TO waypoint, ground speed, bearing to the TO waypoint, track, Active and Standby frequencies, distance off-track, and the map scale. While viewing the map display, press the COM smart key to allow access to the Comm radio functions.
Recalling a Frequency The GX60/65 can access several areas of stored frequencies. The GX60/65 can access airport frequencies from its database of: Nearest, TO, FROM, INFO, automatically stored active, User stored, weather, and emergency frequencies.
3a. Press ENTER to move the displayed frequency into the Standby frequency position. or 3b. Press the FLIP/FLOP key to move it into the Active position.
Nearest Frequency The frequency list for the last Nearest Airport viewed will be available in the Comm function when you press RCL . If a diamond appears on the right, turn the SMALL knob to view more frequencies. INFO Frequency You may view up to 15 frequencies for the last airport viewed using the Info function.
1. In the Comm function, press RCL and then turn the LARGE knob to display the Auto Stack List (Auto). 2. Turn the SMALL knob to view the stored frequencies. The last used frequency is shown at the top of the list. User Stored Frequencies When you press the MEM key the Standby frequency is stored in User memory.
Weather Frequencies (When available) 162.400 MHz 162.425 MHz 162.450 MHz 162.475 MHz 162.500 MHz 162.525 MHz 162.550 MHz Note You can search for the best local weather by inserting a Weather frequency into the Standby position, pressing MON , and then turning the SMALL knob to scroll through the Weather channel choices.
Stuck Mic The GX60/65 helps protect you from a situation where the microphone may get stuck in the ON or Transmit position. If the microphone is keyed for longer than 35 seconds, the GX60/65 will return to the receive mode on the selected frequency.
RF Signal Strength The RF Signal Level function shows the relative signal strength of the frequency you are listening to. The range displayed is between 0 and 255. The value will constantly change while you are viewing it as signal conditions change. RF Signal Level 119.
2. Press SEL and then turn the SMALL knob to adjust the level. Press ENTER to activate the desired level. Intercom Squelch Mic 1 095 Transmit Mic Selection The Transmit Mic selection page allows to select which microphones are available for transmitting.
Sidetone Level Adjustment The Sidetone Level Adjustment page is used to display and adjust the headphone sidetone level. This value controls the volume while you are transmitting. 1. In the Comm Radio Information function, turn the LARGE knob to view the Sidetone Level Adjustment page.
Start Up Displays The Start Up Sequence runs each time the unit is powered on. The Start Up Sequence varies between units due to installation differences. The initial start up message is displayed for about three seconds. Apollo GX By II Morrow Startup Bypass During the startup sequence, press the SKIP “smart” key to stop the initial testing.
Owner Message If the owner name has been previously entered (in System Mode), this page with your name is displayed for three seconds. No owner info screen is displayed if the user has not entered the owner data . Property of: II Morrow Inc Memory Tests Your Apollo GX performs a number of tests at startup to ensure proper operation.
Failure to pass the software checksum test indicates that the software memory is corrupted. The GPS board will not continue operation when the following screen is displayed. Software Test Failed: Contact IIMorrow Non-Volatile RAM Tests The non-volatile RAM validation code does the following checks every time the unit is powered up.
Miscellaneous NVRAM or EEPROM Memory Failure All other user input values which are held in non-volatile RAM are checked for validity, producing the following message if any of the values needed to be reset. The following message is then displayed until you press ENTER .
Database Message This page shows the database name and expiration date. If the database has expired, press ENTER to continue. Americas DB Expires mm/dd/yy Version: x.
press ENTER to accept the current position, though this is not required. Ppos: 2.3nm 130° To Nrst Wpt SLE Ent-OK SEL-Chnge 2. Press SEL to change the Seed Position. 3. The current Reference Position will be displayed and the Chg? prompt will flash. Ppos: 44°54.
SMALL knob. Turn the LARGE knob to move to each character of the waypoint name. 4. When you have entered the waypoint name, press ENTER . Change Lat/Lon Reference Position 1.
4. After entering the Seed Position, you will be prompted next to clear the active flight plan. Choose Yes or No with the SMALL knob. Press ENTER to continue normal operations.
TO/FROM FLAG -To- To/From Flag tests and display screens are provided for the To, From, and Off conditions. Nav Valid and Nav Super Flag Tests The Nav Valid and Nav Super Flag outputs are tested next.
VDI tests and display screen are provided for VDI Full Up, VDI Half Up, VDI Level, VDI Full Down, and VDI Half Down. VDI Valid and VDI Super Flag Tests (GX50 and GX60/65 only) The VDI Valid and VDI Super Flag outputs are tested next.
Screen Test A full visual display test on each line of the display and all of the annunciators is run next, preceded for two seconds by the following screen. Starting Display Test... The visual display incrementally lights groups of pixels on the electroluminescent display.
3. Turn the SMALL knob to view the GPS Satellites Used for the Position fixes page. GPS SV’s for Fix 31, 27, 26, 19, 07, 02 4. Turn the SMALL knob again to view the GPS Satellite Status, Elevation, Signal Strength (SIG), and Azimuth page. Turn the SMALL knob to view information about each available satellite.
Flight Simulator Your Apollo GX is provided with a Flight Simulation program that allows you to “fly” your unit by simulating the speed and altitude.
Removing and Replacing the Apollo GX The following procedure is used to remove the Apollo GX so you can operate it at a location of your choice. . While inserting or removing the GX, Do not exert excessive turning force at the end of the cam lock travel or the unit may be damaged.
lock is hard to turn or the unit does not seat fully, the unit is probably binding and the mounting tube should be checked. Starting the Flight Simulation The following procedure is used to start the flight simulation. It is recommended that you have a data card properly inserted into the data card slot so you can use the appropriate functions.
6. You will be prompted to use or clear the previous Flight Plan. Turn the SMALL knob to choose Yes or No. Press ENTER . If you do nothing, the Apollo GX will automatically retain the previous Flight Plan and switch to the Nav function.
Troubleshooting Or, what to do when nothing works! This section contains information to troubleshoot your Apollo GX product when improper operation is observed. The following table lists possible problems you could encounter while operating the unit. Examine the possible causes of the problem and take the action listed to correct the trouble.
To Ensure Trouble Free Operation Avoid high cockpit temperatures when the aircraft is not in use. Extreme heat shortens the life of any electronic equipment. Periodically check all antenna, power, and ground connections. Caution DO NOT clean the face plate with chemical cleaning agents, solvents, or harsh detergents.
Problem Possible Cause Action No GPS signal reception Obstructed signal path Move aircraft out of hangar or away from buildings to provide an unobstructed view of the sky for the antenna Incorrect see.
Problem Possible Cause Action Search for nearest waypoints reveals too few or wrong types of waypoints Incorrect selection of waypoint types to show after search Runway Limits are set for a value that.
GPS Navigation GPS Overview The Global Positioning System (GPS) is a constellation of 24, or more, satellites in six orbit lanes 10,898 nautical miles above the earth at an inclination angle of about 55 degrees from the equator. Each satellite orbits the earth twice in 24 hours.
processes the information to determine which satellites are “visible” to the receiver’s antenna. With this determination made, the receiver chooses satellites to calculate a position fix.
Glossary A Altitude (GPS ALT): Altitude, as calculated by the Apollo GX , based upon a mathematical model of the earth’s surface curvature. A substantial difference between this altitude value and altitude referenced to sea level may exist. Altitude Assist: An aid that provides guidance in descending from one altitude to another.
Bearing (BRG): The direction to any point, usually measured in degrees relative to true or magnetic north. The direction from your present position to your destination waypoint. C CF: Final approach course Fix. This waypoint type is used when necessary to define a course to the FAF - all VOR DME approaches require a course fix waypoint.
Cross Track Deviation: The distance that your are away from your intended course. CTAF: Common Traffic Advisory Frequency. D Database: A collection of data structured in such a way as to allow quick and convenient access to any particular record or records.
Desired Track (DTK): The desired course of navigation between a point of origin (FROM) and a destination (TO) waypoint. Destination: The last waypoint in the active route.
FDE: The F ault D etection and E xclusion column refers to the ability to identify and exclude a faulty satellite and still have suitable satellite geometry at that position. FF: Final Approach Fix. A code appended to a waypoint in the database that may not appear on a published map.
Hold: Waypoint sequencing is disabled or suspended. A hold may be automatically or manually activated. This should not be confused with a “holding pattern.” Pressing the OBS/HLD key suspends waypoint sequencing. I IAF: Initial Approach Fix. Identifier: A name, typically abbreviated, assigned to a waypoint.
Magnetic North: The region, some distance from the geographic north pole where the earth’s magnetic lines concentrate. A magnetic compass points to the magnetic north. Magnetic Variation (Mag Var): The angle between the magnetic and true north. At various points on the earth it is different due to local magnetic disturbances.
N Nautical Mile (nm): A distance measurement equal to 6,076 feet, or 1.15 statute mile. One nautical mile is also equal to one minute of latitude. NAVSTAR: The name given to GPS satellites formed from the acronym for NAV igation S ystem with T ime And R anging.
Relative Bearing Indicator: The Relative Bearing Indicator is an arrow next to the Bearing value that indicates an approximate bearing to a waypoint or airspace relative to the aircraft’s current track when your current ground speed is more than 5 knots.
Track (TRK): The imaginary line that the flight path of an airplane makes over the earth. Track Angle: The angle of your actual direction of travel. Track angle is computed using the magnetic variation at the Present Position. Track Angle Error (TAE): The difference between the Desired Track and the Track Angle (Dtk - Trk = Tae).
UTC Differential: The difference in time between that at the present position and UTC. UTM (Universal Transverse Mercator map projection system): Also known as Military Grid Coordinates, the UTM grid consists of 60 north-south/east-west zones, each six degrees wide in longitude.
Notes 15-12 Glossary.
Index A Abbreviations .......... 10-4 Access database ..........5 - 3 Activate flight plan ....... 6-14 Air pressure ........... 7-20 Air speed ......... 7-20 - 7-21 Air temperature ..... 7-20 - 7-21 Airport elevation .........5 - 6 Airport frequency .
CDI reverse sensing ....... 9-22 Change approach ........ 6-22 Cleaning ............. 13-2 Clear exclusion list ....... 9-35 Clear flight plan wpts ...
Emergency channel ....... 10-8 Emergency search ........3 - 9 Empty TO waypoint .......8 - 4 En route operation ....... 9-30 Enable approach ...... 6-23, 9-8 Encoder altitude ......... 3-15 Encoding altimeter ....... 7-20 Ending Altitude ......... 3-18 Enroute .
Antenna ·········· 11-12 Azimuth ·········· 7-18 Communication failure · · · 8-5 Elevation ·········· 7-18 Error ·············8 - 5 Failure ·······.
Lat/Lon units ...........7 - 4 Left engine fuel ......... 7-23 Leg distance ............3 - 6 List key ..............1 - 6 Load approach ....... 6-22, 9-7 Load destination .........9 - 6 Local altimeter .......... 3-15 Localizer ......... 3-39 - 3-40 Low fuel .
I n U s e ············ 3-19 Standby ··········· 3-19 Part numbers ........... 1-ii Password ............. 7-16 Pattern .............. 4-20 PDOP .............. 3-21 Phase II Approach ........ 9-89 Phase III Approach ....... 9-90 Photocell .
Sunset/Sunrise time .......5 - 8 Symbol Triangle ···········3 - 5 System ...........7 - 1 - 7-24 Navigation Info ·······7 - 1 System Info ········· 7-11 T Technical assistance ....... 13-1 Terminal operation ....... 9-30 Tips .
Type ··········· 1-6, 4-6 Update User ········ 5-12 User info ···········5 - 3 VOR info ···········5 - 2 Waypoint alert .......... 8-10 Weather channel ........ 10-7 Web Page ............. 1-ii Wind direction .
.
© 2001 by UPS Aviation Technologies, Inc. 2345 Turner Rd., S.E. Salem, OR 97302 U.S.A. Phone 503.581.8101 800.525.6726 In Canada 800.654.3415 FAX 503.
Un point important après l'achat de l'appareil (ou même avant l'achat) est de lire le manuel d'utilisation. Nous devons le faire pour quelques raisons simples:
Si vous n'avez pas encore acheté II Morrow Inc. 60 c'est un bon moment pour vous familiariser avec les données de base sur le produit. Consulter d'abord les pages initiales du manuel d'utilisation, que vous trouverez ci-dessus. Vous devriez y trouver les données techniques les plus importants du II Morrow Inc. 60 - de cette manière, vous pouvez vérifier si l'équipement répond à vos besoins. Explorant les pages suivantes du manuel d'utilisation II Morrow Inc. 60, vous apprendrez toutes les caractéristiques du produit et des informations sur son fonctionnement. Les informations sur le II Morrow Inc. 60 va certainement vous aider à prendre une décision concernant l'achat.
Dans une situation où vous avez déjà le II Morrow Inc. 60, mais vous avez pas encore lu le manuel d'utilisation, vous devez le faire pour les raisons décrites ci-dessus,. Vous saurez alors si vous avez correctement utilisé les fonctions disponibles, et si vous avez commis des erreurs qui peuvent réduire la durée de vie du II Morrow Inc. 60.
Cependant, l'un des rôles les plus importants pour l'utilisateur joués par les manuels d'utilisateur est d'aider à résoudre les problèmes concernant le II Morrow Inc. 60. Presque toujours, vous y trouverez Troubleshooting, soit les pannes et les défaillances les plus fréquentes de l'apparei II Morrow Inc. 60 ainsi que les instructions sur la façon de les résoudre. Même si vous ne parvenez pas à résoudre le problème, le manuel d‘utilisation va vous montrer le chemin d'une nouvelle procédure – le contact avec le centre de service à la clientèle ou le service le plus proche.